Q17) Two identical copper blocks of mass m=1.5 kg, block L at temperature Ta = 60 °C and block R at temperature TiR-20° C. The blocks are in a thermally insulated box and are separated by an insulating shutter. When we lift the shutter, the blocks eventually come to the equilibrium temperature T-40°C. The net entropy change (in J/K) of the two-block system during this irreversible process is: (The specific heat of copper is 386 J/kg. K) a) 0 b)-74.1 c) -2.4 d) +74.1 e) +2.4 Q18) How much energy (in 10 J) must be transferred as heat for a reversible isothermal expansion of an ideal gas at 132°C if the entropy of the gas increases by 46.0 J/K? a) 1.86 b)-1.86 c) 7.21 d) -7.21 e) 2.67

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Q17) Two identical copper blocks of mass m =1.5 kg, block L. at temperature Ta
= 60 °C and block R at temperature TiR-20° C. The blocks are in a thermally
insulated box and are separated by an insulating shutter. When we lift the shutter,
the blocks eventually come to the equilibrium temperature T-40°C. The net
entropy change (in J/K) of the two-block system during this irreversible process is:
(The specific heat of copper is 386 J/kg. K)
a) 0
b)-74.1
c) -2.4
d) +74.1 e) +2.4
Q18) How much energy (in 10 J) must be transferred as heat for a reversible
isothermal expansion of an ideal gas at 132°C if the entropy of the gas increases by
46.0 J/K?
a) 1.86
b)-1.86
c) 7.21
d) -7.21
e) 2.67
Transcribed Image Text:Q17) Two identical copper blocks of mass m =1.5 kg, block L. at temperature Ta = 60 °C and block R at temperature TiR-20° C. The blocks are in a thermally insulated box and are separated by an insulating shutter. When we lift the shutter, the blocks eventually come to the equilibrium temperature T-40°C. The net entropy change (in J/K) of the two-block system during this irreversible process is: (The specific heat of copper is 386 J/kg. K) a) 0 b)-74.1 c) -2.4 d) +74.1 e) +2.4 Q18) How much energy (in 10 J) must be transferred as heat for a reversible isothermal expansion of an ideal gas at 132°C if the entropy of the gas increases by 46.0 J/K? a) 1.86 b)-1.86 c) 7.21 d) -7.21 e) 2.67
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Work and Heat
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY