Q1) The heat capacity at constant volume of hydrogen sulfide at low pressures is given by Eq. Ql-1: C[kJ/(mol*C)] = 0.0252 + 1.547 × 10-$T – 3.012 × 10-°T² .. Eq. QI-1 Where, Tis temperature in °C. A quantity of H;S is kept in a piston-fitted cylinder with initial temperature, pressure, and volume equal to 25°C, 2.0 atm, and 3.0 liters, respectively. i- Calculate the heat (kJ) required to raise the gas temperature from 25°C to 1000°C, if the heating takes place at constant volume (i.e., if the piston does not move).

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
Q1)
The heat capacity at constant volume of hydrogen sulfide at low pressures is given by Eq. Q1-1:
C[kJ/(mol*C)] = 0.0252 + 1.547 × 10-$T – 3.012 × 10-°7²
- Eq. Ql-1
Where, Tis temperature in °C.
A quantity of H;S is kept in a piston-fitted cylinder with initial temperature, pressure, and
volume equal to 25°C, 2.0 atm, and 3.0 liters, respectively.
i- Calculate the heat (kJ) required to raise the gas temperature from 25°C to 1000°C, if the
heating takes place at constant volume (i.e., if the piston does not move).
ii- For a closed system at constant pressure with negligible kinetic and potential energy changes,
the specific heat is determined by Eq. Q1-2:
Cp = C, + 0 008314
Eq. Q1-2
calculate the heat (J) required to raise the gas from 25°C to 1000°C at constant pressure. What
would the piston do during this process?
Given the gas constant = 0 08206 atm. Lit/ (mol. K)
Transcribed Image Text:Q1) The heat capacity at constant volume of hydrogen sulfide at low pressures is given by Eq. Q1-1: C[kJ/(mol*C)] = 0.0252 + 1.547 × 10-$T – 3.012 × 10-°7² - Eq. Ql-1 Where, Tis temperature in °C. A quantity of H;S is kept in a piston-fitted cylinder with initial temperature, pressure, and volume equal to 25°C, 2.0 atm, and 3.0 liters, respectively. i- Calculate the heat (kJ) required to raise the gas temperature from 25°C to 1000°C, if the heating takes place at constant volume (i.e., if the piston does not move). ii- For a closed system at constant pressure with negligible kinetic and potential energy changes, the specific heat is determined by Eq. Q1-2: Cp = C, + 0 008314 Eq. Q1-2 calculate the heat (J) required to raise the gas from 25°C to 1000°C at constant pressure. What would the piston do during this process? Given the gas constant = 0 08206 atm. Lit/ (mol. K)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
First Law of thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The