Q/ Super-heated vapor enters condenser of a steam power plant at 2 bar and 250 °C. The vapor is condensed at 0.2 bar and 60 °C. Condensed cooling water enters into another streamline at 25 °C and the water exits at 40 °C. The heat is transferred from the condensing steam to the cooling water with no change in kinetic and potential energies. Calculate (a) the ratio of the cooling water mass flow rate to the condensing steam mass flow rate. (b) The specific heat transfer from the condensing steam to the cooling water. Coodensate Steam 0.2 bar 2, 60 C 2 bar 200 C Cooling Cooling water water 25 C 40 C

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Q/ Super-heated vapor enters condenser of a steam power plant at 2 bar and 250 °C. The vapor is condensed
at 0.2 bar and 60 °C. Condensed cooling water enters into another streamline at 25 °C and the water exits at
40 °C. The heat is transferred from the condensing steam to the cooling water with no change in kinetic and
potential energies. Calculate (a) the ratio of the cooling water mass flow rate to the condensing steam mass
flow rate. (b) The specific heat transfer from the condensing steam to the cooling water.
Steam
2 bar
200 C
Condensate
0.2 bar 2,
60 C
Cooling
Cooling
water
water
25 C
40 C
Transcribed Image Text:Q/ Super-heated vapor enters condenser of a steam power plant at 2 bar and 250 °C. The vapor is condensed at 0.2 bar and 60 °C. Condensed cooling water enters into another streamline at 25 °C and the water exits at 40 °C. The heat is transferred from the condensing steam to the cooling water with no change in kinetic and potential energies. Calculate (a) the ratio of the cooling water mass flow rate to the condensing steam mass flow rate. (b) The specific heat transfer from the condensing steam to the cooling water. Steam 2 bar 200 C Condensate 0.2 bar 2, 60 C Cooling Cooling water water 25 C 40 C
Expert Solution
steps

Step by step

Solved in 3 steps with 7 images

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY