
A First Course in Probability (10th Edition)
10th Edition
ISBN: 9780134753119
Author: Sheldon Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
8.1

Transcribed Image Text:Q 8.1. Suppose that X and Y are two random variables whose joint distribution is the standard
Gaussian distribution in the plane. Let random variables R≥ 0 and = = [0, 2π) satisfy
X = R cos and Y Rsin 0.
(a) State the density of the joint distribution of R and O. (You do not need to derive this)
(b) Express Z = in terms of and hence, making reference to part (a), calculate the density
of the distribution of Z.
It will help to try to picture this one.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 36 images

Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
for part b, could u please provide more details of the calculations I circled? thanks

Transcribed Image Text:Step3
c)
(b) Let the random variable Z =
F₂(2)=P(X ≤2)
Put
= P(Y ≤ ZX, X ≥0) + P(Y ≤ ZX, X <0)
= 2P(Y ≤ ZX, X>0)
XZ
= 25° 5x² fx(x) fy(v) dy dx
0
-∞
V
2
2
= ²5² ²2/12 - 0 + 1 = 0 ²+² oy ox
2√² √x²
e
e
dy dx
0
√√2π
√2π
∞ XZ
= 2 × ²2²1 ²²² ²²0 +² oy dx
2
2
e
e dy
2₁
0 -∞
XZ
-15 oyce why 1.00 disappears?
-22
=
e
dy dx
π
-∞
details?
= 1/1 1 0 0
e
0
2
Differentiate the function to
x²
2
(xz)²
How to diffe
√₂ (2) = = √²0 = = = (42²³²
1
2
e
e
π
0
Ell
> ×
e
Y
X
?Cound the pdf of Z,
give
и
more
- 1/²/(1+2²)
x dx
x dx
Solution
by Bartleby Expert
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
for part b, could u please provide more details of the calculations I circled? thanks

Transcribed Image Text:Step3
c)
(b) Let the random variable Z =
F₂(2)=P(X ≤2)
Put
= P(Y ≤ ZX, X ≥0) + P(Y ≤ ZX, X <0)
= 2P(Y ≤ ZX, X>0)
XZ
= 25° 5x² fx(x) fy(v) dy dx
0
-∞
V
2
2
= ²5² ²2/12 - 0 + 1 = 0 ²+² oy ox
2√² √x²
e
e
dy dx
0
√√2π
√2π
∞ XZ
= 2 × ²2²1 ²²² ²²0 +² oy dx
2
2
e
e dy
2₁
0 -∞
XZ
-15 oyce why 1.00 disappears?
-22
=
e
dy dx
π
-∞
details?
= 1/1 1 0 0
e
0
2
Differentiate the function to
x²
2
(xz)²
How to diffe
√₂ (2) = = √²0 = = = (42²³²
1
2
e
e
π
0
Ell
> ×
e
Y
X
?Cound the pdf of Z,
give
и
more
- 1/²/(1+2²)
x dx
x dx
Solution
by Bartleby Expert
Knowledge Booster
Similar questions
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- A First Course in Probability (10th Edition)ProbabilityISBN:9780134753119Author:Sheldon RossPublisher:PEARSON

A First Course in Probability (10th Edition)
Probability
ISBN:9780134753119
Author:Sheldon Ross
Publisher:PEARSON
