
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Prove that the solution for the static friction coefficient μ=tan(φ) is exactly the same even when choosing a different set of axes (i.e. different ones from the one shown in the figure). (Hint: Your x-axis can be parallel to the ground)

Transcribed Image Text:N
mg sine
mg cose
mg
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please Asaparrow_forwardA car travels at a constant speed of 25.5 mi/h (11.4 m/s) on a level circular turn of radius 43.0 m, as shown in the bird's-eye view in figure a. What minimum coefficient of static friction, ?s, between the tires and the roadway will allow the car to make the circular turn without sliding?arrow_forwardIn the very Dutch sport of ducth-dude-on-a-pole, athletes run up to a long pole and then use it to vault across a canal. At the very top of his arc, a 70kg vaulter is moving at 3.5m/s and is 5.0m from the bottom end of the pole. What vertical force does the pole exert on the vaulter (in magnitude)?arrow_forward
- The accompanying figure shows a frictionless channel in the shape of a segment of a circle with center at "O". The channel has been anchored to a frictionless horizontal tabletop. You are looking down at the table. Forces exerted by the air are negligible. A ball is shot at high speed into the channel at "p" and exits at "r." Consider the following distinct forces: A downward force of gravity. A force exerted by the channel pointing from q to O. A force in the direction of motion. A force pointing from O to q. Which of the above forces is (are) acting on the ball when it is within the frictionless channel at position "q"?arrow_forwardA velodrome has an aggressively banked curve, where the surface makes an angle of 58.9 degrees with the horizontal. If you are biking around this curve (such that your path traces a horizontal circle with radius 21.7 m as you go around the turn), and the coefficient of static friction of your bike tires with the velodrome surface is 0.617, what is the minimum speed that you can go before starting to slip down the ramp? Give your answer in km/hr.arrow_forwardConsider a 55-N weight suspended by two wires as shown in the accompanying figure. If the magnitude of vector F₁ is 36 N, find angle a and the magnitude of vector F2. The measure of angle a is (Round to two decimal places as needed.) The magnitude of vector F₂ is N. (Round to two decimal places as needed.) Jα FR 57° (F2arrow_forward
- Please give the correct answerarrow_forwardAn engineer wants to design an oval racetrack such that 3.20 × 10³ lb racecars can round the exactly 1000 ft radius turns at 1.00 x 102 mi/h without the aid of friction. She estimates that the cars will round the turns at a maximum of 175 mi/h. Find the banking angle necessary for the race cars to navigate the turns at 1.00 × 10² mi/h without the aid of friction. 0 = What additional radial force F, is necessary to prevent a race car from drifting on the curve at 175 mi/h? This banking and radius are very close to the actual turn data at Daytona International Speedway, where 3.20 × 10³ lb stock cars travel around the turns at about 175 mi/h. 0 Fr= Narrow_forwardA car rounds a level (unbanked) curve with a radius of 95 m without skidding at a speed of 25 m/s. What is the smallest possible coefficient of friction between the tires and the ground? Is the friction static or kinetic? Include a force (or free body) diagram of the situation.arrow_forward
- A car of mass 622 kg is driving around a curve with a circular arc of radius 20 m. If the car drives at a speed of 12 m/s, what is the minimum value of the coefficient of friction between the car's tires and the road that will keep the car on the road?arrow_forwardYou are at the top of the Mount Everest whose height is 12,000 ft. Find the gravity force generated by you (80kg) using the provided equation of the attraction force in N? Please give me answer ASAP.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON