Prove that lim n! n n = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

*Using epsilon definition of the limit

Prove that lim
n!
(3) =
n
0
Transcribed Image Text:Prove that lim n! (3) = n 0
Expert Solution
Step 1: Proof

lim fn=limn!nn

We know that hlim gx=limfgx

Therefore

loglimfn=limlogn!nn                    =limlog1n+limlog2n+.....+limlognn

Now we have to show that  for 1mnlim logmn=0 holds which is enough to say that lim fn=limn!nn=0

From the definition of of limit  that a function f is said to be  tends to l as x if for each ε>0 there exist k>0 such that fx-l<ε, when x>k

Let choose a positive ε

Now logmn-0<ε will hold if mn<eε, that is n>meε .

Now let k=meε and we know 1mn and eε>1, clearly mek<n, therefore n>k

Therefore for  logmn-0<ε there exist nk

Hence the limit exist and the function fn0 as n if for each ε>0 there exist k>0 such that fn-0<ε, when n>k

limnlogmn=0

Therefore lim fn=limn!nn=0

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,