Proposition 12.5.14. Polynomials in R[x] have both right distributivity across addition: (g(x) +r(x))p(x) = g(x)p(x) +r(x)p(x), and left distributivity across addition: p(x) (q(x) +r(x)) = p(x)q(x) + p(x)r(x).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please do Exercise 12.5.15 and please show step by step and explain

PROOF. Το show right distributivity, we have:
71
(q(z) + r(x))p(x) =(Σ+
j=0
-
-
||
-
max(n.)
Σ
j=0
max(n.) m
Σ Σ(bya + cal)*
j=0 =0
max(n,e) m
- Σ Σ(byzana + cjzatz)
j=0 t=0
mix(n,e) m
max(n.) m
Σ Σααρα + Σ Σφα
j=0
i=0
j=0 i=0
j=0
max(n.)
Σ (0;te)a) Samart
Σα
j=0
i=0
Gaj
max(nl)
TTL
Σ (bind tead)) Σαγα
j=0
i=0
ΤΕ 772
Σαμαρά
i=0
j=0 i=0
772
(bind test) Saint)
i=0
771
-ΣΣ+ΣΣτα
j=0 t=0
ι
ΤΟ
Τ
ΤΙΣ
-Στη Σα+Στη Σαμ
j=0
j=0
i=0
i=0
=q(x)p(a) + r(x)p(a),
which gives us right distributivity. We'll leave left distributivity up to you:
Exercise 12.5.15. Provide justification for each of the steps in the calcu-
lation in Proposition 12.5.14
Transcribed Image Text:PROOF. Το show right distributivity, we have: 71 (q(z) + r(x))p(x) =(Σ+ j=0 - - || - max(n.) Σ j=0 max(n.) m Σ Σ(bya + cal)* j=0 =0 max(n,e) m - Σ Σ(byzana + cjzatz) j=0 t=0 mix(n,e) m max(n.) m Σ Σααρα + Σ Σφα j=0 i=0 j=0 i=0 j=0 max(n.) Σ (0;te)a) Samart Σα j=0 i=0 Gaj max(nl) TTL Σ (bind tead)) Σαγα j=0 i=0 ΤΕ 772 Σαμαρά i=0 j=0 i=0 772 (bind test) Saint) i=0 771 -ΣΣ+ΣΣτα j=0 t=0 ι ΤΟ Τ ΤΙΣ -Στη Σα+Στη Σαμ j=0 j=0 i=0 i=0 =q(x)p(a) + r(x)p(a), which gives us right distributivity. We'll leave left distributivity up to you: Exercise 12.5.15. Provide justification for each of the steps in the calcu- lation in Proposition 12.5.14
Proposition 12.5.14. Polynomials in R[x] have both right distributivity
across addition:
(q(x) +r(x))p(x) = q(x)p(x) +r(x)p(x),
and left distributivity across addition:
p(x) (q(x) +r(x)) = p(x)q(x) + p(x)r(x).
Transcribed Image Text:Proposition 12.5.14. Polynomials in R[x] have both right distributivity across addition: (q(x) +r(x))p(x) = q(x)p(x) +r(x)p(x), and left distributivity across addition: p(x) (q(x) +r(x)) = p(x)q(x) + p(x)r(x).
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,