Problem Like friction, drag force opposes the motion of a particle in a fluid; however, drag force depends on the particle's velocity. Find the expression for the particle's velocity v(x) as a function of position at any point x in a fluid whose drag force is expressed as Fdrag = kmv where k is a constant, m is the mass of the particle and v is its velocity. Assume that the particle is constrained to move in the x-axis only with an initial velocity vo Solution: The net force along the x-axis is: EF = -F then: mv = m Since acceleration is the first time derivative of velocity a = dv/dt, mv = m We can eliminate time dt by expressing, the velocity on the left side of the equation as v = dx/dt. Manipulating the variables and simplifying, we arrive at the following expression = -k "Isolating" the infinitesimal velocity dx and integrating with respect to dx, we arrive at the following: = vo which shows that velocity decreases in a linear manner.

icon
Related questions
Question

Fill in the Blanks

QUESTION 4
Problem
Like friction, drag force opposes the motion of a particle in a fluid; however, drag force depends on the particle's velocity. Find the expression for the particle's velocity v(x) as a function of position at any
point x in a fluid whose drag force is expressed as
Fdrag = kmv
where k is a constant, m is the mass of the particle and v is its velocity. Assume that the particle is constrained to move in the x-axis only with an initial velocity vo.
Solution:
The net force along the x-axis is:
ΣΕ-F
= m
then:
mv = m
Since acceleration is the first time derivative of velocity a = dv/dt,
mv = m
We can eliminate time dt by expressing, the velocity on the left side of the equation as v = dx/dt. Manipulating the variables and simplifying, we arrive at the following expression
= -k
"Isolating" the infinitesimal velocity dx and integrating with respect to dx, we arrive at the following:
= Vo-
which shows that velocity decreases in a linear manner.
Transcribed Image Text:QUESTION 4 Problem Like friction, drag force opposes the motion of a particle in a fluid; however, drag force depends on the particle's velocity. Find the expression for the particle's velocity v(x) as a function of position at any point x in a fluid whose drag force is expressed as Fdrag = kmv where k is a constant, m is the mass of the particle and v is its velocity. Assume that the particle is constrained to move in the x-axis only with an initial velocity vo. Solution: The net force along the x-axis is: ΣΕ-F = m then: mv = m Since acceleration is the first time derivative of velocity a = dv/dt, mv = m We can eliminate time dt by expressing, the velocity on the left side of the equation as v = dx/dt. Manipulating the variables and simplifying, we arrive at the following expression = -k "Isolating" the infinitesimal velocity dx and integrating with respect to dx, we arrive at the following: = Vo- which shows that velocity decreases in a linear manner.
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer