Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- Let A={ a,b,c }. Prove or disprove that P(A) is a group with respect to the operation of union. (Sec. 1.1,7c)arrow_forwardWrite 20 as the direct sum of two of its nontrivial subgroups.arrow_forward38. Let be the set of all matrices in that have the form with all three numbers , , and nonzero. Prove or disprove that is a group with respect to multiplication.arrow_forward
- 9. Find all homomorphic images of the octic group.arrow_forward39. Let be the set of all matrices in that have the form for arbitrary real numbers , , and . Prove or disprove that is a group with respect to multiplication.arrow_forwardExercises 3. Find an isomorphism from the additive group to the multiplicative group of units . Sec. 16. For an integer , let , the group of units in – that is, the set of all in that have multiplicative inverses, Prove that is a group with respect to multiplication.arrow_forward
- 9. Find all elements in each of the following groups such that . under addition. under multiplication.arrow_forward42. For an arbitrary set , the power set was defined in Section by , and addition in was defined by Prove that is a group with respect to this operation of addition. If has distinct elements, state the order of .arrow_forwardLet G=1,i,1,i under multiplication, and let G=4=[ 0 ],[ 1 ],[ 2 ],[ 3 ] under addition. Find an isomorphism from G to G that is different from the one given in Example 5 of this section. Example 5 Consider G=1,i,1,i under multiplication and G=4=[ 0 ],[ 1 ],[ 2 ],[ 3 ] under addition. In order to define a mapping :G4 that is an isomorphism, one requirement is that must map the identity element 1 of G to the identity element [ 0 ] of 4 (part a of Theorem 3.30). Thus (1)=[ 0 ]. Another requirement is that inverses must map onto inverses (part b of Theorem 3.30). That is, if we take (i)=[ 1 ] then (i1)=((i))1=[ 1 ] Or (i)=[ 3 ] The remaining elements 1 in G and [ 2 ] in 4 are their own inverses, so we take (1)=[ 2 ]. Thus the mapping :G4 defined by (1)=[ 0 ], (i)=[ 1 ], (1)=[ 2 ], (i)=[ 3 ]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning