Problem 3: Inputs: a = 12 in b = 12.75 in Table not requ Use the scalar approach (not the cross product). The moment exerted by the weight about point E is 244 lb-in. (a) What is the magnitude of the weight? (round this answer to the nearest whole number) (b) What is the moment exerted by the weight about point S?

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter4: Coplanar Equilibrium Analysis
Section: Chapter Questions
Problem 4.97P: The figure shows a wire cutter. Determine the cutting force on the wire at A when the 75-N forces...
icon
Related questions
icon
Concept explainers
Question
Problem 3:
Inputs:
a = 12 in
b = 12.75 in
Use the scalar approach (not the cross product).
The moment exerted by the weight about
point E is 244 lb-in.
Table not required, but feel free to use it if you like
(a) What is the magnitude of the weight?
(round this answer to the nearest whole number)
(b) What is the moment exerted by the
weight about point S?
Problem 4:
Inputs:
a = 1.2 m
b = 0.5 m
P = 50 N
We are going to put this system in equilibrium.
We haven't talked much about equilibrium yet,
but that's okay. In order for a body to be in
equilibrium, we need the sum of the forces to
equal zero, and the sum of the moments about
any point to equal zero.
S
A
Table not required, but feel free to use it if you like
a
FA
30°
a
E
b
40°
P
b
(a) Let's start by summing moments about point A. Determine the magnitude of FB such that EMA = 0.
In other words, compute FB such that the net moment about point A is zero.
(b) Now let's repeat the process at B. Sum moments about point B and compute the magnitude of FA
required to make the net moment about point B equal zero (XMB = 0).
B
FB
(c) Okay, that's all good, but did this satisfy our force summation? Check to see if the vector sum of the
forces equals zero. (Cool right?)
(d) Out of curiosity, sum moments about point C. What is Mc? Is this as expected?
Transcribed Image Text:Problem 3: Inputs: a = 12 in b = 12.75 in Use the scalar approach (not the cross product). The moment exerted by the weight about point E is 244 lb-in. Table not required, but feel free to use it if you like (a) What is the magnitude of the weight? (round this answer to the nearest whole number) (b) What is the moment exerted by the weight about point S? Problem 4: Inputs: a = 1.2 m b = 0.5 m P = 50 N We are going to put this system in equilibrium. We haven't talked much about equilibrium yet, but that's okay. In order for a body to be in equilibrium, we need the sum of the forces to equal zero, and the sum of the moments about any point to equal zero. S A Table not required, but feel free to use it if you like a FA 30° a E b 40° P b (a) Let's start by summing moments about point A. Determine the magnitude of FB such that EMA = 0. In other words, compute FB such that the net moment about point A is zero. (b) Now let's repeat the process at B. Sum moments about point B and compute the magnitude of FA required to make the net moment about point B equal zero (XMB = 0). B FB (c) Okay, that's all good, but did this satisfy our force summation? Check to see if the vector sum of the forces equals zero. (Cool right?) (d) Out of curiosity, sum moments about point C. What is Mc? Is this as expected?
Problem 3:
Inputs:
a = 12 in
b = 12.75 in
Use the scalar approach (not the cross product).
The moment exerted by the weight about
point E is 244 lb-in.
Table not required, but feel free to use it if you like
(a) What is the magnitude of the weight?
(round this answer to the nearest whole number)
(b) What is the moment exerted by the
weight about point S?
Problem 4:
Inputs:
a = 1.2 m
b = 0.5 m
P = 50 N
We are going to put this system in equilibrium.
We haven't talked much about equilibrium yet,
but that's okay. In order for a body to be in
equilibrium, we need the sum of the forces to
equal zero, and the sum of the moments about
any point to equal zero.
S
A
Table not required, but feel free to use it if you like
a
FA
30°
a
E
b
40°
P
b
(a) Let's start by summing moments about point A. Determine the magnitude of FB such that EMA = 0.
In other words, compute FB such that the net moment about point A is zero.
(b) Now let's repeat the process at B. Sum moments about point B and compute the magnitude of FA
required to make the net moment about point B equal zero (XMB = 0).
B
FB
(c) Okay, that's all good, but did this satisfy our force summation? Check to see if the vector sum of the
forces equals zero. (Cool right?)
(d) Out of curiosity, sum moments about point C. What is Mc? Is this as expected?
Transcribed Image Text:Problem 3: Inputs: a = 12 in b = 12.75 in Use the scalar approach (not the cross product). The moment exerted by the weight about point E is 244 lb-in. Table not required, but feel free to use it if you like (a) What is the magnitude of the weight? (round this answer to the nearest whole number) (b) What is the moment exerted by the weight about point S? Problem 4: Inputs: a = 1.2 m b = 0.5 m P = 50 N We are going to put this system in equilibrium. We haven't talked much about equilibrium yet, but that's okay. In order for a body to be in equilibrium, we need the sum of the forces to equal zero, and the sum of the moments about any point to equal zero. S A Table not required, but feel free to use it if you like a FA 30° a E b 40° P b (a) Let's start by summing moments about point A. Determine the magnitude of FB such that EMA = 0. In other words, compute FB such that the net moment about point A is zero. (b) Now let's repeat the process at B. Sum moments about point B and compute the magnitude of FA required to make the net moment about point B equal zero (XMB = 0). B FB (c) Okay, that's all good, but did this satisfy our force summation? Check to see if the vector sum of the forces equals zero. (Cool right?) (d) Out of curiosity, sum moments about point C. What is Mc? Is this as expected?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Knowledge Booster
Statics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L