Problem 3: A mass m is thrown from the origin att = 0 with initial three-momentum po in the y direction. If it is subject to a constant force Fo in the x direction, find its velocity v as a function of t, and by integrating v find its trajectory. Check that in the non-relativistic limit the trajectory is the expected parabola. Hint: The relationship F = P is still true in relativistic mechanics, but now p = ymv instead of p = mv. To find the non-relativistic limit, treat c as a very large quantity and use the Taylor approximation (1+ x)" = 1 + nx when a is small.
Problem 3: A mass m is thrown from the origin att = 0 with initial three-momentum po in the y direction. If it is subject to a constant force Fo in the x direction, find its velocity v as a function of t, and by integrating v find its trajectory. Check that in the non-relativistic limit the trajectory is the expected parabola. Hint: The relationship F = P is still true in relativistic mechanics, but now p = ymv instead of p = mv. To find the non-relativistic limit, treat c as a very large quantity and use the Taylor approximation (1+ x)" = 1 + nx when a is small.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 6 images