PLZ I want full answer with all solution steps A heat exchanger is to be designed to heat 32/68 mixture of ethylene glycol and water from 24 °C to 55 °C by a hot water stream from 79 °C to 42 °C. Flow rate of cold stream is 20 kg/s. Inlet pressure for both stream is 50 psi and the maximum pressure drop of 10 psi for cold stream and 8 psi for hot water are permissible. Report valid assumptions made for the design and give required justification. Estimate i) Heat Transfer, Corrected LMTD, ii) Tube bundle diameter (Using TEMA standards and Codes) and Tube cross sectional area iii) Heat transfer coefficient iv) Overall heat transfer coefficient v) Pressure Drop (Shell side & Tube Side) note: Assume any values for the missing data

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Select 1-2 counter current heat exchanger with 3/4 inch (19 mm) OD, 14 BWG (2.108
mm), 8 feet (2.44m) long tube. Triangular pitch geometry.
Transcribed Image Text:Select 1-2 counter current heat exchanger with 3/4 inch (19 mm) OD, 14 BWG (2.108 mm), 8 feet (2.44m) long tube. Triangular pitch geometry.
PLZ I want full answer with all solution steps
A heat exchanger is to be designed to heat 32/68 mixture of ethylene glycol and water from 24 °C to
55 °C by a hot water stream from 79 °C to 42 °C. Flow rate of cold stream is 20 kg/s. Inlet pressure for
both stream is 50 psi and the maximum pressure drop of 10 psi for cold stream and 8 psi for hot water
are permissible. Report valid assumptions made for the design and give required justification. Estimate
i) Heat Transfer, Corrected LMTD,
ii) Tube bundle diameter (Using TEMA standards and Codes) and Tube cross sectional area
iii) Heat transfer coefficient
iv) Overall heat transfer coefficient
v) Pressure Drop (Shell side & Tube Side)
note: Assume any values for the missing data
Transcribed Image Text:PLZ I want full answer with all solution steps A heat exchanger is to be designed to heat 32/68 mixture of ethylene glycol and water from 24 °C to 55 °C by a hot water stream from 79 °C to 42 °C. Flow rate of cold stream is 20 kg/s. Inlet pressure for both stream is 50 psi and the maximum pressure drop of 10 psi for cold stream and 8 psi for hot water are permissible. Report valid assumptions made for the design and give required justification. Estimate i) Heat Transfer, Corrected LMTD, ii) Tube bundle diameter (Using TEMA standards and Codes) and Tube cross sectional area iii) Heat transfer coefficient iv) Overall heat transfer coefficient v) Pressure Drop (Shell side & Tube Side) note: Assume any values for the missing data
Expert Solution
steps

Step by step

Solved in 7 steps with 6 images

Blurred answer
Knowledge Booster
Heat Exchangers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY