College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 3 images
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
please work on it better
Solution
by Bartleby Expert
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
please work on it better
Solution
by Bartleby Expert
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Sketch a PV diagram and find the work done by the gas during the following stages. (a) A gas is expanded from a volume of 1.0 L to 4.0 L at a constant pressure of 5.0 atm. (b) The gas is then cooled at constant volume until the pressure falls to 1.5 atm. (c) The gas is then compressed at a constant pressure of 1.5 atm from a volume of 4.0 L to 1.0 L. (Note: Be careful of signs.) (d) The gas is heated until its pressure increases from 1.5 atm to 5.0 atm at a constant volume. (e) Find the net work done during the complete cycle.Sketch a PV diagram of the process outlined in parts (a)–(d).arrow_forwarda)A gas undergoes two processes. In the first, the volume remains constant at 0.180 m3 and the pressure increases from 1.50×105 Pa to 6.50×105 Pa . The second process is a compression to a volume of 0.110 m3 at a constant pressure of 6.50×105 Pa . Find the total work done by the gas during both processes. b)The temperature of 0.160 mol of an ideal gas is held constant at 58.0 ∘C while its volume is reduced to a fraction of 30.0 % of its initial volume. The initial pressure of the gas is 1.22 atm . Determine the work done by the gas, what is the change in its internal energy, and Does the gas exchange heat with its surroundings? c)On a warm summer day, a large mass of air (atmospheric pressure 1.01×105Pa) is heated by the ground to a temperature of 27.0 ∘C and then begins to rise through the cooler surrounding air. Calculate the temperature of the air mass when it has risen to a level at which atmospheric pressure is only 8.60×104 Pa . Assume that air is an ideal gas, with γ=1.40. (This…arrow_forwardA cylinder of volume 0.320 m3 contains 10.5 mol of neon gas at 17.4°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa(b) Find the internal energy of the gas. J(c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J(d) What is the temperature of the gas at the new volume? K(e) Find the internal energy of the gas when its volume is 1.000 m3. J(f) Compute the change in the internal energy during the expansion. J(g) Compute ΔU − W. J(h) Must thermal energy be transferred to the gas during the constant pressure expansion or be taken away? This answer has not been graded yet. (i) Compute Q, the thermal energy transfer. J(j) What symbolic relationship between Q, ΔU, and W is suggested by the values obtained?arrow_forward
- Question 1. An ideal diatomic gas contracts from 1.25 m³ to 0.500 m³ at a constant pressure of 1.50 x 10°P.. Draw a PV diagram and name this process that occurs at constant pressure. If the initial temperature is 425 K, calculate (a) the work done on the gas, (b) the change in internal energy of the gas, (c) the energy transfer, Q, and, (d) the final temperature.arrow_forwardA gas in a cylinder is held at a constant pressure of 2.20×105 Pa and is cooled and compressed from 1.90 m3 to 1.10 m3 . The internal energy of the gas decreases by 1.15×105 J. a) Find the work done by the gas. Express your answer in joules b)Find the amount of the heat that flowed into or out of the gas. Express your answer in joules to two significant figures. c) State the direction (inward or outward) of the flow.arrow_forwardThe work done by 6.02 x 1023 molecules of a monatomic ideal gas (γ = 1.4) in expanding adiabatically is 825 J. The initial temperature and volume of the gas are 393 oC and 100 cm3. Obtain a) the final internal energy of the gas. b) final volume of the gas.arrow_forward
- A sample of n = 2.00 moles of monoatomic ideal gas expands adiabatically, the work done on the gas is W = -5.00 x 103 J. The initial temperature and pressure of the gas are Ti = 600 K and Pi = 4.05 x 105 Pa. Calculate: a) the final temperature of the gas; b) the final pressure of the gas. R = 8.314 J/mol Karrow_forwardWhich one of the following statements is true? (a) The path on a PV diagram always goes from the smaller volume to the larger volume. (b) The path on a PV diagram always goes from the smaller pressure to the larger pressure. (c) The area under the path on a PV diagram is always equal to the work done on a gas. (d) The area under the path on a PV diagram is always equal in magnitude to the work done on a gas.arrow_forwardAn ideal gas is expanding isothermally from initial volume of 3.00 L at 94 atm to final volume of 24.0 L. Calculate the heat if the work is done by the gas. [1 atm: 1.013 x 105 Pa] Select one: O 0.59 J O -59402.57 J 59402.57 J O 5.9e7 Jarrow_forward
- Sketch a PV diagram and find the work done by the gas during the following stages. (a) A gas is expanded from a volume of 1.0 L to 5.5 L at a constant pressure of 5.5 atm. (J) (b) The gas is then cooled at constant volume until the pressure falls to 1.5 atm. (J) (c) The gas is then compressed at a constant pressure of 1.5 atm from a volume of 5.5 L to 1.0 L. (Note: Be careful of signs.) (J) (d) The gas is heated until its pressure increases from 1.5 atm to 5.5 atm at a constant volume. (J) (e) Find the net work done during the complete cycle. (J)arrow_forwardA monatomic ideal gas initially fills a V0 = 0.45 m3 container at P0 = 85 kPa. The gas undergoes an isobaric expansion to V1 = 1.4 m3. Next it undergoes an isovolumetric cooling to its initial temperature T0. Finally it undergoes an isothermal compression to its initial pressure and volume. 1 Calculate the work done by the gas, W1, in kilojoules, during the isobaric expansion (first process). 2 Calculate the heat absorbed Q1, in kilojoules, during the isobaric expansion (first process). 3 Write an expression for the change in internal energy, ΔU1 during the isobaric expansion (first process). 4 Calculate the work done by the gas, W2, in kilojoules, during the isovolumetric cooling (second process). 5 Calculate the heat absorbed Q2, in kilojoules, during the isovolumetric cooling (second process). 6 Calculate the change in internal energy by the gas, ΔU2, in kilojoules, during the isovolumetric cooling (second process). 7 Calculate the work done by the gas, W3, in kilojoules,…arrow_forwardAn ideal monatomic gas undergoes changes in pressure and volume, as shown in the pV diagram below. The initial volume is 0.02 m3 and the final volume is 0.10 m3. The initial pressure is 1 atm and the final pressure is 2 atm. Recall that 1 atm = 101.3 kPa. (a) Calculate the magnitude, or absolute value, of the work done on the gas in this process. Answer = - 13429J (c) The initial temperature of the gas is 308 K. Calculate the temperature of the gas at the end of the process. Answer = 3080 k Just need answer with the following: (d) What is the change in thermal energy for the gas in this process? (e) Calculate the quantity of heat transfer added to (positive) or removed from (negative) the gas during this process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON