College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Please answer the following
A) Suppose an object takes 1000 years to orbit the Sun. How many times farther from the Sun is it, when compared with Earth?
B) Communications with the spacecraft Alpha using radio waves require 2000 years for the round trip (there and back). This implies that Alpha is how many light years away from Earth?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Next you will (1) convert your measurement of the semi-major axis from arcseconds to AU, (2) convert your measurement of the period from days to years, and (3) calculate the mass of the planet using Newton's form of Kepler's Third Law. Use Stellarium to find the distance to the planet when Skynet took any of your images, in AU. Answer: 4.322 AU Use this equation to determine a conversion factor from 1 arcsecond to AU at the planet's distance. You will need to convert ? = 1 arcsecond to degrees first. Answer: 2.096e-5 AU (2 x 3.14 x 4.322 x (.000278/360) = 2.096e-5) Next, use this number to convert your measurement of the moon's orbital semi-major axis from arcseconds to AU. A) Calculate a in AU. B) Convert your measurement of the moon's orbital period from days to years. C) By Newton's form of Kepler's third law, calculate the mass of the planet. D) Finally, convert the planet's mass to Earth masses: 1 solar mass = 333,000 Earth masses.arrow_forwardRead this main idea: The sun is the center of our solar system. Choose three details that go with the main idea. The sun's gravity holds the planets in place. It provides them with heat and light. The largest stars, called supergiants, are 1,500 times bigger than our sun. It takes Earth 365 days to orbit the sun. Jupiter takes 12 years! Our sun is not the largest or hottest star. It is a medium sized yellow star. Radio telescopes use radio waves to show stars in great detail. Astronomers long ago and today use star charts to map star locations. All of the planets in our solar system revolve around one star-our sun. Stars can be blue, white, yellow, or red. Blue stars are the hottest. A reflector telescope bounces star light through mirrors.arrow_forwardThe sun of galaxy X has a diameter of about 796,000 mi with a maximum distance from Planet X's surface of about 78,700,000 mi. Planet X's moon has a diameter of 2,731 mi. For a total solar eclipse to occur, the moon must pass between the sun and Planet X. The moon must also be close enough to Planet X for the moon's umbra (shadow) to reach the surface of Planet X. The maximum distance that the moon can be from Planet X and still have a total solar eclipse occur i (Round to the nearest thousand as needed )arrow_forward
- Using a 8-m reflector telescope on Mars, what is the maximum distance we could measure using stellar parallax?arrow_forwardIn Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…arrow_forwardWhat is the wavelength of maximum intensity (in nm) and the total energy emitted (in J/s/m2) by a celestial object at 6 K above absolute zero?arrow_forward
- (a) The distance to a star is approximately 7.80 1018 m. If this star were to burn out today, in how many years would we see it disappear? years (b) How long does it take for sunlight to reach Saturn?arrow_forwardI attempted to answer this question and I'm not sure what I am doing wrong. My formula says A.S. = 206265 (separation/distance from observer) I know to convert to the same units, so I ended up with 80 Million Km being 8 x 10 ^ -6 LY Could you please explain each step especially for the part that I got wrong for both A and B?arrow_forwardAt its closest approach to Earth, Mars is 57.50 million kilometers away. How long (in minutes) would a radio signal sent from a future manned mission to Mars take to travel to Earth? (distance = speed x time) [55]arrow_forward
- Brayden knows the distance from Earth to Pluto is 5.9×1095.9×109 kilometers. He has learned that there is a new space shuttle under development that can travel at a speed of 28,000 kilometers per hour. Brayden is trying to determine how long in days it would take a space crew on this new shuttle to reach Pluto. His work is below.arrow_forwardF = 9/5 C + 32 ; C = 5/9 (F - 32); K = 273 + C; Lambda = 2900/T; T^4 = I (128)(10^8); I1/I2 = ( D2 / D1 )2 Show All Calculations What is the intensity of sunlight on planet XZEON if: The intensity of direct sunlight on earth is Ie = 2.0 calories per square centimeter per minute and Planet XZEON is 7.7 times farther from the sun than the earth is.arrow_forwardWhat is the wavelength of maximum intensity (in nm) and the total energy emitted (in J/s/m2) by a celestial object at 6 K above absolute zero?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON