
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:When the temperature of a copper coin is raised by 120 C°, its diameter increases by 0.20%. To two significant figures, give the percent
increase in (a) the area of a face, (b) the thickness, (c) the volume, and (d) the mass of the coin. (e) Calculate the coefficient of linear
expansion of the coin.
(a)
Number
i
Units
(b)
Number
i
Units
(c) Number
i
Units
(d) Number
i
Units
(e) Number
i
Units
>
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose that an ideal gas in a sealed metal container (so it has a fixed volume) has its temperature increased by a factor of 3.68x. By what factor would the pressure of the gas increase or decrease in the container?arrow_forwardTwo cylindrical rods have the same mass. One is made of silver (density = 10 500 kg/m³), and one is made of iron (density = 7860 kg/m³). Both rods conduct the same amount of heat per second when the same temperature difference is maintained across their ends. What is the ratio (silver-to-iron) of (a) the lengths and (b) the radii of these rods? Give your answers as numbers with no units. (a) Number i (b) Number Units Unitsarrow_forwardTwo glass containers, of equal volume each hold a mole of gas. Container 1 is filled with hydrogen gas (molar mass 2 g / mol), and Container 2 holds helium (molar mass 4 g / mol). If the pressure of the gas in Container 1 equals the pressure of the gas in Container 2, which of the following is true? (a) The temperature of the gas in Container 1 is lower than the temperature of the gas in Container 2. (b) The temperature of the gas in Container 1 is greater than the temperature of the gas in Container 2. (c) The value of R for the gas in Container 1 is ½ the value of R for the gas in Container 2. (d) The rms speed of the gas molecules in Container 1 is lower than the rms speed of the gas molecules in Container 2. (e) The rms speed of the gas molecules in Container 1 is greater than the rms speed of the gas molecules in Container 2.arrow_forward
- We know from Newton's Law of Cooling that the rate at which an object warms up is proportional to the difference between the ambient temperature of the room and the temperature of the object. The differential equation corresponding to this situation is given by y' = k(M – y) where k is a positive constant. The solution to this equation is given by y = M + (yo – M)e-kt , where yo is the initial temperature of the object. Suppose your Thanksgiving turkey is kept at a temperature of 40 degrees Fahrenheit until it is put into a 350 degree Fahrenheit oven. It takes 2 hours for the turkey to warm up to a safe eating temperature of 165 degrees Fahrenheit. Find the values of yo, M, and k, for this situation, rounding your answers to 3 decimal places. Yo= M = k= Regardless of your answers above, suppose the k value in this situation is k = 0.3. Find the initial rate of increase of the turkey's temperature as soon as it is placed in the oven. Round to 3 decimal places. degrees per hour.arrow_forwardBob built a scale model of the bridge that is 2.637m long at the lowest temperature (T=-45 degrees Celsius) using an unknown material. When the temperature reaches the highest value (T=43 degrees Celsius), he measures again the length of the bridge finding that it has expanded L=5.56mm. Calculate the coefficient of linear expansion and find the material Bob used to make his model.arrow_forwardWhen the temperature of a coin is raised by 82 °F, the coin's diameter increases by 2.20 x 10-5 m. If the original diameter is 2.15 x 10-2 m, find the coefficient of linear expansion.arrow_forward
- In everyday experience, the measures of temperature most often used are Fahrenheit F and Celsius C. Recall that the relationship between them is given by the following formula. F = 1.8C + 32 Physicists and chemists often use the Kelvin temperature scale. You can get kelvins K from degrees Celsius by using the following formula. K = C + 273.15 (a) Calculate that value.K(25) = (b) Find a formula expressing the temperature C in degrees Celsius as a function of the temperature K in kelvins. C = (c) Find a formula expressing the temperature F in degrees Fahrenheit as a function of the temperature K in kelvins. F = (d) What is the temperature in degrees Fahrenheit of an object that is 272 kelvins?arrow_forwardThe temperature of a spere is raised in by 300˚C. The coefficient of volume expansion of the sphere is 47x10-6 C degree. By what percentage does volume increase? (a)3.22% (b)2.01% (c)1.41% (d)2.81%arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON