Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
3-Phase 50Hz 6 pole induction motor has rotor resistance of 0.1 ohm and reactance of 0.92. ignore voltage drop in stator and assume thee rotor resistance is constant.
Full load slip is 3%, then find Tmax /Tfl
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The supply frequency to the stator of an 8-pole induction motor is 50 Hz, and the rotor frequency is 3 Hz. Determine the slip and the rotor speed.arrow_forwardA 3-0, 50-Hz induction motor with its rotor star-connected gives 500 V (r.m.s.) at standstill between slip-rings on open circuit. Calculate the current and power factor in each phase of the rotor windings at standstill when joined to a star-connected circuit, each limb of which has a resistance of 10 Q and an inductance of 0.03 H. The resistance per phase of the rotor windings is 0.2 Q and inductance 0.03 H. Calculate also the current and power factor in each rotor phase when the rings are short- circuited and the motor is running with a slip of 4 per cent. [13.6 A, 0.48; 27.0 A, 0.47] (London University) A 4-pole, 50-Hz, 3-phase induction motor has a slip-ring rotor with a resistance and standstill reactance of 0.04 2 and 0.2 2 per phase respectively. Find the amount of resistance to be inserted in each rotor phase to obtain full-load torque at starting. What will be the approximate power factor in the rotor at this instant ? The slip at full-load is 3 per cent. [0.084 2, 0.516 p.f.]…arrow_forwardA 3-phase 4-pole, 50-Hz induction motor runs at a speed of 1440 r.p.m. The rotating field produced by the rotor rotates at a speed of ..... r.p.m. with respect to the rotor a) 1500 b) 1440 c) 60 d) 0arrow_forward
- A 3-phase, 60 Hz induction motor has 2 poles. If the slip is 2% at a certain load, determine the synchronous speed and the speed of the rotor and the frequency of the induced e.m.f.’s in the rotorarrow_forwardA 4-pole, 3-phase alternator drives at 1500 r.p.m. is supplying to an induction motor which has full load speed of 4320 r.p.m. Find the percentage slip and number of poles.arrow_forwardThe rotor speed of a 6-pole,50-cycle induction motor is 960rpm. Calculate the percentslip.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,