Perform the following operation. 5 hours 21 minutes - 4 hours 57 minutes 5 hours - 4 hours hours 22 seconds 51 seconds 21 minutes 22 seconds 57 minutes 51 seconds minutes seconds

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Need help with all, please and thank you. 

### Subtracting Time: Example Problem

#### Perform the following operation:

\[ 
\begin{array}{ccc}
\text{5 hours} & \text{21 minutes} & \text{22 seconds} \\
-\text{4 hours} & \text{57 minutes} & \text{51 seconds} \\
\end{array} 
\]

### Step-by-Step Solution

1. **Write down the numbers to be subtracted:**

\[ 
\begin{array}{ccc}
\text{5 hours} & \text{21 minutes} & \text{22 seconds} \\
-\text{4 hours} & \text{57 minutes} & \text{51 seconds} \\
\end{array} 
\]

2. **Align hours, minutes, and seconds in columns and begin the subtraction from the seconds column:**

\[ 
\begin{array}{ccc}
\text{5 hours} & \text{21 minutes} & \text{22 seconds} \\
-\text{4 hours} & \text{57 minutes} & \text{51 seconds} \\
\end{array} 
\]

3. **Subtract the seconds:**
   Since 22 seconds is less than 51 seconds, you need to borrow 1 minute (which equals 60 seconds) from the 21 minutes. This leaves you with 20 minutes and \( 22 + 60 = 82 \) seconds.

\[ 
\begin{array}{ccc}
\text{5 hours} & \text{20 minutes} & \text{82 seconds} \\
-\text{4 hours} & \text{57 minutes} & \text{51 seconds} \\
\end{array} 
\]

   Now subtract the seconds:
\[ 
82 \text{ seconds} - 51 \text{ seconds} = 31 \text{ seconds} 
\]

4. **Subtract the minutes:**
   Since 20 minutes is less than 57 minutes, you need to borrow 1 hour (which equals 60 minutes) from the 5 hours. This leaves you with 4 hours and \( 20 + 60 = 80 \) minutes.

\[ 
\begin{array}{ccc}
\text{4 hours} & \text{80 minutes} & & \\
-\text{4 hours} & \text{57 minutes} & & \\
\end
Transcribed Image Text:### Subtracting Time: Example Problem #### Perform the following operation: \[ \begin{array}{ccc} \text{5 hours} & \text{21 minutes} & \text{22 seconds} \\ -\text{4 hours} & \text{57 minutes} & \text{51 seconds} \\ \end{array} \] ### Step-by-Step Solution 1. **Write down the numbers to be subtracted:** \[ \begin{array}{ccc} \text{5 hours} & \text{21 minutes} & \text{22 seconds} \\ -\text{4 hours} & \text{57 minutes} & \text{51 seconds} \\ \end{array} \] 2. **Align hours, minutes, and seconds in columns and begin the subtraction from the seconds column:** \[ \begin{array}{ccc} \text{5 hours} & \text{21 minutes} & \text{22 seconds} \\ -\text{4 hours} & \text{57 minutes} & \text{51 seconds} \\ \end{array} \] 3. **Subtract the seconds:** Since 22 seconds is less than 51 seconds, you need to borrow 1 minute (which equals 60 seconds) from the 21 minutes. This leaves you with 20 minutes and \( 22 + 60 = 82 \) seconds. \[ \begin{array}{ccc} \text{5 hours} & \text{20 minutes} & \text{82 seconds} \\ -\text{4 hours} & \text{57 minutes} & \text{51 seconds} \\ \end{array} \] Now subtract the seconds: \[ 82 \text{ seconds} - 51 \text{ seconds} = 31 \text{ seconds} \] 4. **Subtract the minutes:** Since 20 minutes is less than 57 minutes, you need to borrow 1 hour (which equals 60 minutes) from the 5 hours. This leaves you with 4 hours and \( 20 + 60 = 80 \) minutes. \[ \begin{array}{ccc} \text{4 hours} & \text{80 minutes} & & \\ -\text{4 hours} & \text{57 minutes} & & \\ \end
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,