P9 Consider Figure 2.12, for which there is an institutional network connected to the Internet. Suppose that the average object size is 1,000,000 bits and that the average request rate from the institution's browsers to the origin servers is 16 requests per second. Also suppose that the amount of time it takes from when the router on the Internet side of the access link forwards an HTTP request until it receives the response is three seconds on average (see Section 2.2.5). Model the total average response time as the sum of the average access delay (that is, the delay from Internet router to institution router) and the average Internet delay. For the average access delay, use A/(1-Ab), where A is the average time required to send an object over the access link and b is the arrival rate of objects to the access link.< a. Find the total average response time.< b. Now suppose a cache is installed in the institutional LAN. Suppose the miss rate is 0.4. Find the total response time.<

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
100%

Calculation about Computer Networks

P9
Consider Figure 2.12, for which there is an institutional network connected to
the Internet. Suppose that the average object size is 1,000,000 bits and that the
average request rate from the institution's browsers to the origin servers is 16
requests per second. Also suppose that the amount of time it takes from when
the router on the Internet side of the access link forwards an HTTP request until
it receives the response is three seconds on average (see Section 2.2.5). Model
the total average response time as the sum of the average access delay (that
is, the delay from Internet router to institution router) and the average Internet
delay. For the average access delay, use A/(1 - Ab), where A is the average<
time required to send an object over the access link and b is the arrival rate of
objects to the access link.<
a. Find the total average response time.<
b. Now suppose a cache is installed in the institutional LAN. Suppose the
miss rate is 0.4. Find the total response time.<
Transcribed Image Text:P9 Consider Figure 2.12, for which there is an institutional network connected to the Internet. Suppose that the average object size is 1,000,000 bits and that the average request rate from the institution's browsers to the origin servers is 16 requests per second. Also suppose that the amount of time it takes from when the router on the Internet side of the access link forwards an HTTP request until it receives the response is three seconds on average (see Section 2.2.5). Model the total average response time as the sum of the average access delay (that is, the delay from Internet router to institution router) and the average Internet delay. For the average access delay, use A/(1 - Ab), where A is the average< time required to send an object over the access link and b is the arrival rate of objects to the access link.< a. Find the total average response time.< b. Now suppose a cache is installed in the institutional LAN. Suppose the miss rate is 0.4. Find the total response time.<
Origin servers
Public Internet
15 Mbps access link
100 Mbps LAN
Institutional network
Figure 2.12 Bottleneck between an institutional network and the Internet
Transcribed Image Text:Origin servers Public Internet 15 Mbps access link 100 Mbps LAN Institutional network Figure 2.12 Bottleneck between an institutional network and the Internet
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Network Transmission Cabling
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education