Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Outdoor air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a crossflow heat exchanger before it enters the furnace. Air enters the heat exchanger at 101 kPa and 30°C at a rate of 0.5 m3 /s. The combustion gases (cp = 1.10 kJ/kg·°C) enter at 350°C at a rate of 0.85 kg/s and leave at 260°C. Determine the rate of heat transfer to the air and the rate of exergy destruction in the heat exchanger.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. The heat produced in a boiler is transferred from the combustion products to the water. While the temperature of the combustion products decreases from 1100 °C to 550 °C, the pressure remains constant at 0.1 MPa. The average specific heat at constant pressure of the combustion products is 1.09 kJ/kg.K. The water enters the system at 0.8 MPa and 150 °C, and leaves at 0.8 MPa and 250 °C. Determine the second law efficiency and the irreversibility for each kilogram of water vaporized for this process. Note: This is a thermodynamics course question. Please provide a solution that is clear and quick.arrow_forwardAir (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a crossflow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°C at a rate of 1.6 m3 /s. The combustion gases (cp = 1.10 kJ/kg·°C) enter at 180°C at a rate of 2.2 kg/s and leave at 95°C. Determine the rate of entropy generation.arrow_forwardThermodynamicarrow_forward
- 5-84 Air (Cp=1.005 kJ/kg°C) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°Ct at rate of 0.6 m³/s. The combustion gases (Cp=1.10 kJ/kg°C) that enter at 160°C at a rate of 0.95 kg/s and leave at 95°C. Determine the rate of heat transfer to the air and its outlet temperature. Air 95 kPa 20°C 0.6 m³/s Exhaust gases 0.95 kg/s 95°Carrow_forwardA vessel initially contains 5.0 kg of liquid water and 2.0 kg of ice at 0°C. Energy is added until the ice has just melted. The temperature at the boundary where heat transfer occurs is taken to be the system temperature during the process. The enthalpy of melting is 333.5 kJ/kg. Consider the following processes used to melt the ice. a. Heat is added from the environment at 20°C. Determine the entropy flux and the total entropy generation, both in kJ/K. b. Heat is added from a reservoir at 727°C. Determine the same quantities as in part (a). c. Paddle-wheel work is used to change the state. Determine the total entropy production for the process, in kJ/K. d. Comment on the relative degree of irreversibility for the three processes.arrow_forwardA heat exchanger is to heat water (cp = 4.18 kJ/kg·oC) from 25oC to 60oC at a rate of 0.2 kg/s. The heating is to be accomplished by geothermal water (cp = 4.31 kJ/kg·oC) available at 159oC at a mass flow rate of 0.3 kg/s. Find the exit temperature of geothermal water.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY