Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN: 9780134463216
Author: Robert F. Blitzer
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question
Why did I get -1 when it should be 1 for the inverse of A? what did i do wrong?
**Matrix Inversion Example**

**Objective:**
Determine the inverse of matrix \(A\).

**Given:**
\[ A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 6 \end{bmatrix} \]

**Steps:**

1. **Calculate the Determinant of \(A\):**
   -  Find determinant \(|A|\):
   \[
   |A| = 6(-6) = -36
   \]
   - Simplified determinant:
   \[
   |A| = 6
   \]

2. **Form the Matrix \(N\):**
   - Simplified form:
   \[
   N = \begin{bmatrix} 0 & -2 & -6 \\ 3 & 0 & -3 \\ 0 & 2 & 0 \end{bmatrix}
   \]

3. **Further Simplify Matrix \(N\):**
   - Switch rows for determinant calculation:
   \[
   N = \begin{bmatrix} 0 & -3 & 0 \\ 2 & 0 & -2 \\ 6 & 3 & 0 \end{bmatrix}
   \]
   - Reduction and simplification:
   \[
   N = \begin{bmatrix} 0 & 3 & 0 \\ -2 & 0 & 2 \\ -6 & -3 & 0 \end{bmatrix}
   \]

4. **Compute the Inverse of \(A\):**
   - Formula:
   \[
   A^{-1} = \frac{1}{|A|}[N]
   \]
   - Calculation:
   \[
   A^{-1} = \frac{1}{6} \begin{bmatrix} 0 & -2 & -6 \\ 3 & 0 & -3 \\ 0 & 2 & 0 \end{bmatrix}
   \]
   - Result:
   \[
   A^{-1} = \begin{bmatrix} 0 & -1/3 & 0 \\ 1/2 & 0 & -1/2 \\ 0 & 1/3 & 0 \end{bmatrix}
   \]

**Conclusion:**
- The inverse of matrix \(A\) is \(\begin{
expand button
Transcribed Image Text:**Matrix Inversion Example** **Objective:** Determine the inverse of matrix \(A\). **Given:** \[ A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 6 \end{bmatrix} \] **Steps:** 1. **Calculate the Determinant of \(A\):** - Find determinant \(|A|\): \[ |A| = 6(-6) = -36 \] - Simplified determinant: \[ |A| = 6 \] 2. **Form the Matrix \(N\):** - Simplified form: \[ N = \begin{bmatrix} 0 & -2 & -6 \\ 3 & 0 & -3 \\ 0 & 2 & 0 \end{bmatrix} \] 3. **Further Simplify Matrix \(N\):** - Switch rows for determinant calculation: \[ N = \begin{bmatrix} 0 & -3 & 0 \\ 2 & 0 & -2 \\ 6 & 3 & 0 \end{bmatrix} \] - Reduction and simplification: \[ N = \begin{bmatrix} 0 & 3 & 0 \\ -2 & 0 & 2 \\ -6 & -3 & 0 \end{bmatrix} \] 4. **Compute the Inverse of \(A\):** - Formula: \[ A^{-1} = \frac{1}{|A|}[N] \] - Calculation: \[ A^{-1} = \frac{1}{6} \begin{bmatrix} 0 & -2 & -6 \\ 3 & 0 & -3 \\ 0 & 2 & 0 \end{bmatrix} \] - Result: \[ A^{-1} = \begin{bmatrix} 0 & -1/3 & 0 \\ 1/2 & 0 & -1/2 \\ 0 & 1/3 & 0 \end{bmatrix} \] **Conclusion:** - The inverse of matrix \(A\) is \(\begin{
Expert Solution
Check Mark
Step 1

Algebra homework question answer, step 1, image 1

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press
Text book image
College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education