Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Topic Video
Question
A 30-cm-diameter, 10-cm-high vertical cylindrical vessel equipped with a vertical tube at the edge is rotated about its vertical axis at a constant angular velocity of 15 rad/s. If the water rise in the tube is 30 cm, determine the net vertical pressure force acting on the vessel.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- For the gate below, which is fully submerged find the centroid, center of pressure from the surface of water (find ?̅ ??? ??)?arrow_forwardA 5-m-long, 4-m-high tank contains 2.5-m-deep water when not in motion and is open to the atmosphere through a vent in the middle. The tank is now accelerated to the right on a level surface at 2 m/s2. Determine the maximum pressure in the tank relative to the atmospheric pressurearrow_forwardAn open cylindrical container of radius R with a thin liquid layer of density p at the bottom, is rotating at a constant angular velocity w. As a result of the rotation, the liquid is displaced clearing a circular area at the bottom of the container or radius R/2. Determine the height of the liquid, H, on the cylindrical wall. R/2arrow_forward
- Consider a 6-m-diameter spherical gate holding a body of water whose height is equal to the diameter of the gate. Atmospheric pressure acts on both sides of the gate. The vertical component of the hydrostatic force acting on this curved surface is (a) 89 kN (b) 270 kN (c) 327 kN (d ) 416 kN (e) 505 kNarrow_forward5-89 The width of the rectangular gate shown in Fig. P5-89 is 3 ft. Determine the magnitude of the resultant force R exerted on the gate by the water (y = 62.4 lb/ft) pres- sure and the location of the center of pressure with respect to the hinge at the bottom of the gate. B 8 ft 5 ft 60° 45°arrow_forwardA 20-cm-diameter, 40-cm-high vertical cylindrical container is partially filled with 25-cm-high water. Now the cylinder is rotated at a constant speed of 15 rad/s. The height of water at the edge of the cylinder is (a) 40 cm (b) 35.2 cm (c) 30.7 cm (d) 25 cm (e) 38.8 cmarrow_forward
- A lead ball of radius 5 cm is immersed in water. Calculate the thrust it undergoes. Consider the density of water as 1000 km/m^3. The formula for the volume of the ball is V=3/4 πr^3arrow_forwardOpen tank (4 m long, 3 m height and 3 m wide) contains liquid (S-0.8) to height 1.5 m. If this tank is accelerated along its length on a horizontal truck at a constant value of 2.5 m/s², determine pressure at the bottom of the tank at front and rear edges (in kN/m?). (take y-9.8 kN/m³ for water)arrow_forwardA vertical rectangular plate with a width of 16 m and a height of 12 m is located 4 m below a water surface. The resultant hydrostatic force on this plate is (a) 2555 kN (b) 3770 kN (c) 11,300 kN (d) 15,070 kN (e) 18,835 kNarrow_forward
- A 80 cm tall cylinder is filled with water (ρwater = 1000 kg/m3) and oil (ρoil = 600 kg/m3) and is capped on the bottom so no fluid is flowing. It contains equal amounts of the two fluids by weight. What is the pressure at the bottom of the cup?arrow_forwardA two-dimensional thin flat plate is put against an airstream at 4,731.9 meters height at 1,189.88 m/s at an angle of 16° in a wind tunnel. Determine the plate's pressure at the lower surface. (Round-off without decimal places and do not include the units in your answer)arrow_forwardA vertical rectangular wall with a width of 20 m and a height of 12 m is holding a 7-m-deep water body. The resultant hydrostatic force acting on this wall is (a) 1370 kN (b) 4807 kN (c) 8240 kN (d ) 9740 kN (e) 11,670 kNarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY