College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
One technique of estimating the length of a metal is by recording the time it takes for a pulse to travel from one end to the other. The student finds that the time is 0.00349 s. The Young’s modulus of metal 127325340650 is N/m2; and its density is 9260 kg/m3. How long is the rod?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A certain metal with atomic mass 2.3∗10-25 kg has an interatomic bond with length 2.4∗10-10 m and stiffness 42 n/m. What is the speed of sound in a rod made of this metal?arrow_forwardWater ripples are produced by making a cork oscillate up and down at a frequency of 7Hz. The peaks of the ripples are0.07 meters apart. What is the speed of the water ripples?arrow_forwardYou place your ear onto a steel railroad track and hear the sound of a distant train through the rails Δt = 2.7 seconds before you do through the air. The speed of sound in steel is vs = 6100 m/s, and and the air temperature is 36° C. Find the distance, D, to the train in meters.arrow_forward
- A copper block is suspended from a wire, as in part 1 of the drawing. A container of mercury is then raised up around the block, as in part 2, so that 42.0% of the block's volume is submerged in the mercury. The density of copper is 8890 kg/m³, and that of mercury is 13 600 kg/m³. Find the ratio of the fundamental frequency of the wire in part 2 to the fundamental frequency in part 1. f1,Part 2/f1. Part 1 Number i = Copper block Part 1 Units I M Part 2arrow_forwardHow long will it take to hear an echo if you are 487.54 meters from a canyon wall and sound travels as 345.73 m/s?arrow_forwardA student shares a surgical tubing in the lab. The tension on the tubing is 50N. The student measures the fourth frequency of the tubing to the 20 Hz. The length of the tubing is 2m. Calculate the mass of the tubingarrow_forward
- The light intensity (3.431x10^2) cm from a point source is (1.3730x10^0) kW/m². What is the intensity (2.32713x10^2) m away from the same source? Express your result with four significant figures in W/m². Note: Your answer is assumed to be reduced to the highest power possible.arrow_forwardThe highest frequency that we can hear is about 20 kHz (2x 10^4Hz). a) Calculate the wavelength (m) associated with this frequency for sound that travels at 345 m/s. b) How long is this in feet? (Roundanswers to the nearest tenth.arrow_forwardThere is a tube of length 1.0 m with one end closed. You clapped your hand at the mouth of the tube once. The echo of the clap came back after 6.0 milliseconds. What is the velocity of sound in the tube ? 330 m/s O 320 m/s 290 m/s O 170 m/sarrow_forward
- For testing purposes, a musical instrument manufacturing company creates a device so that when you blow into one end with your instrument, sound comes out the other end in opposite directions. A sound technician uses a whistle and generates sound waves with a frequency of 242 Hz. The waves travel in opposite directions in a band room, are reflected by end walls, and return. The band room is 44.0 m long and the whistle is located 14.0 m from one end. What is the phase difference (in degrees) between the reflected waves when they meet at the source of the sound? The speed of sound in air is 343 m/s.arrow_forwardYou are part of a scientific expedition that landed in the planet Martech. The planet has an atmosphere of an unknown gas. In your preparation for the mission you prepared the following table, a resonance tube and a sonic device that can produce three frequencies: 261HZ, 330HZ and 512HZ. Temperature (°c Speed (m/sec) Substance CO2 258 CO2 20 267 Air 331.5 Air 20 344 Water Vapor Helium Hydrogen 20 395 20 927 1,270 Argon 20 300 Delakium 20 2950 You measured the temperature of the gas in the atmosphere and recorded 20 degree Celsius. Remembering the valuable learning experience you had in your class Science and Technology in the Arts, you need to determine the gas of the atmosphere on the planet Martech. When rushing to implement the experiment, you used the sonic device to produce the three frequencies above the resonance tube, but recorded only the length of the resonance tube that produced the first maximum intensity for each one of them without recording the frequency of the sonic…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON