One of the most important definitions in mathematics (calculus in particular) is that of the limit of a sequence. Consider the infinite sequence:1,1/2,1/3,1/4,.... Such a sequence can be represented as follows: an=1/n , n ∈ N Note that the elements of the sequence get arbitrarily close to 0 as n→∞. We call such a point the limit of the sequence. The formal definition for “L is the limit of a sequence an” is as follows: ∀∈ > 0, ∃N ∈ N, ∀ n ∈ N, n > N=⇒ |an−L| < ∈Negate this proposition to obtain the definition of “L is NOT the limit of a sequence an.”
One of the most important definitions in mathematics (calculus in particular) is that of the limit of a sequence. Consider the infinite sequence:1,1/2,1/3,1/4,.... Such a sequence can be represented as follows: an=1/n , n ∈ N Note that the elements of the sequence get arbitrarily close to 0 as n→∞. We call such a point the limit of the sequence. The formal definition for “L is the limit of a sequence an” is as follows: ∀∈ > 0, ∃N ∈ N, ∀ n ∈ N, n > N=⇒ |an−L| < ∈Negate this proposition to obtain the definition of “L is NOT the limit of a sequence an.”
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
One of the most important definitions in mathematics (calculus in particular) is that of the limit of a sequence. Consider the infinite sequence:1,1/2,1/3,1/4,.... Such a sequence can be represented
as follows: an=1/n , n ∈ N Note that the elements of the sequence get arbitrarily close to 0 as n→∞. We call such a point the limit of the sequence. The formal definition for “L is the limit of a sequence
an” is as follows: ∀∈ > 0, ∃N ∈ N, ∀ n ∈ N, n > N=⇒ |an−L| < ∈Negate this proposition to obtain the definition of “L is NOT the limit of a sequence an.”
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,