College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
One mole of oxygen gas is at a pressure of 5.05 atm and a temperature of 24.5°C.
(a) If the gas is heated at constant volume until the pressure triples, what is the final temperature?
(b) If the gas is heated so that both the pressure and volume are doubled, what is the final temperature?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The initial temperature of three moles of oxygen gas is 33.5°C, and its pressure is 7.80 atm. (a) What will its final temperature be when heated at constant volume so the pressure is two times its initial value? °C (b) Now the volume of the gas is also allowed to change. Determine the final temperature if the gas is heated until the pressure and the volume are doubled. °Carrow_forwardTwo glass containers, of equal volume each hold a mole of gas. Container 1 is filled with hydrogen gas (molar mass 2 g / mol), and Container 2 holds helium (molar mass 4 g / mol). If the pressure of the gas in Container 1 equals the pressure of the gas in Container 2, which of the following is true? (a) The temperature of the gas in Container 1 is lower than the temperature of the gas in Container 2. (b) The temperature of the gas in Container 1 is greater than the temperature of the gas in Container 2. (c) The value of R for the gas in Container 1 is ½ the value of R for the gas in Container 2. (d) The rms speed of the gas molecules in Container 1 is lower than the rms speed of the gas molecules in Container 2. (e) The rms speed of the gas molecules in Container 1 is greater than the rms speed of the gas molecules in Container 2.arrow_forward(a) How many molecules are present in a sample of an ideal gas that occupies a volume of 1.90 cm³, is at a temperature of 20°C, and is at atmospheric pressure? molecules -11 (b) How many molecules of the gas are present if the volume and temperature are the same as in part (a), but the pressure is now 1.50 x 10¯ Pa (an extremely good vacuum)? moleculesarrow_forward
- Air is pumped into a bicycle tire. The 42 moles of air initially in the tire have a gauge pressure of 4 atm. How many moles of air must be pumped into the tire in order to raise the gauge pressure to 8 atm? Assume that the volume and temperature of the air inside the tire are approximately constant.arrow_forwardThe density of helium gas at 0.0◦C is0.16 kg/m3kg/m3. The temperature is thenraised to 102 ◦C, but the pressure is kept constant.Assuming that helium is an ideal gas, calculate the new density of the gas.Answer in units of kg/m3.arrow_forwardGas is contained in a 6.00-L vessel at a temperature of 18.0°C and a pressure of 8.00 atm. (a) Determine the number of moles of gas in the vessel. 2.00 mol (b) How many molecules are in the vessel? 1.205 X A mole of objects is equal to how many objects? moleculesarrow_forward
- On a chilly 10°C day, you quickly take a deep breath—all your lungs can hold, 4.0 L. The air warms to your body temperature of 37°C. If the air starts at a pressure of 1.0 atm, and you hold the volume of your lungs constant (a good approximation) and the number of molecules in your lungs stays constant aswell (also a good approximation), what is the increase in pressure inside your lungs?arrow_forwardA certain amount of gas at 25.0°C and at a pressure of 0.650 atm is contained in a glass vessel. Suppose that the vessel can withstand a pressure of 2.00 atm. How high can you raise the temperature of the gas without bursting the vessel? In other words, at what temperature will the glass vessel shatter, in degrees Celsius.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON