
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:One long wire carries current 22.0 A to the left along the x axis. A second long wire carries current 60.0 A to the right along the line (y = 0.280 m, z = 0).
(a) Where in the plane of the two wires is the total magnetic field equal to zero?
y =
(b) A particle with a charge of -2.00 µC is moving with a velocity of 150î Mm/s along the line (y = 0.100 m, z = 0). Calculate the vector magnetic force acting on the particle. (Ignore relativistic effects.)
F =
N
(c) A uniform electric field is applied to allow this particle to pass through this region undeflected. Calculate the required vector electric field.
E =
N/C
Need Help?
Read It
Master It
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a electron moves with velocity (2 i + 3 j - k) km/s through region where both a uniform magnetic field and a uniform electric field exist. What is the force on the electron if the magnetic filed is (2 i + 4 j+ k) T and the electric field is (4 i - j- 2 k) Vm-1? O [- 17.6 i + 8.0j]x 10-16 N O [17.6 i - 8.0 j]x 10-16 N O [+ 11 i - 6j+ 3 k] x 10-16 N O [- 11 i + 6 j - 3 k] x 1016 Narrow_forwardA velocity selector uses a fixed electric field of magnitude E and the magnetic field is varied to select particles of various speeds. If the electric field strength is 8.4 x 10oª N/C, what should be the value of the magnetic field (in tesla) to select protons of velocity 4.2 x 105 m/s? Mass of proton = 1.67 x 10-27 kg. Charge of proton = 1.6 x 10-19 C.arrow_forwardAn electron moves in a circular path with a speed of 1.41 x 10' m/s in the presence of a uniform magnetic field with a magnitude of 1.92 mT. The electron's path is perpendicular to the field. (a) What is the radius (in cm) of the circular path? cm (b) How long (in s) does it take the electron to complete one revolution?arrow_forward
- AS0.0-g metal ball having net charge Q = 5.50 µC is thrown out of a window horizontally north at a speed v = 22.0 m/s. The window is at a height h = 18.0 m above the ground. A uniform, horizontal magnetic field of magnitude B = 0.0100 T is perpendicular to the plane of the ball's trajectory and directed toward the west. (a) Assuming the ball follows the same trajectory as it would in the absence of the magnetic field, find the magnetic force acting on the ball just before it hits the ground. (Let the +x-direction be toward the north, the +y-direction be up and the +z-direction be east.) B. (b) Based on the result of part (a), is it justified for three-significant-digit precision to assume the trajectory is unaffected by the magnetic fleld? O Yes O No Explain.arrow_forwardAn electron moves in a circular path with a speed of 1.49 x 10' m/s in the presence of a uniform magnetic field with a magnitude of 1.88 mT. The electron's path is perpendicular to the field. (a) What is the radius (in cm) of the circular path? cm (b) How long (in s) does it take the electron to complete one revolution? Sarrow_forwardThe magnetic field 38.0 cm away from a long, straight wire carrying current 3.00 A is 1580 nT. (a) At what distance is it 158 nT? cm (b) At one instant, the two conductors in a long household extension cord carry equal 3.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 38.0 cm away from the middle of the straight cord, in the plane of the two wires. nT (c) At what distance is it one-tenth as large? cm (d) The center wire in a coaxial cable carries current 3.00 A in one direction, and the sheath around it carries current 3.00 A in the opposite direction. What magnetic field does the cable create at points outside the cables? nTarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON