College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Once dark adapted, the pupil of your eye is approximately 7 mm in diameter. The headlights of an oncoming car are 120 cm apart. If the resolution of your eye is limited only by diffraction, at what distance are the two headlights marginally resolved? Assume the light’s wavelength in air is 600 nm and
the index of refraction inside the eye is 1.33. (Your eye is not really good enough to resolve headlights at this distance, due to aberrations in the lens.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- While flying at an altitude of 9.50 km, you look out the window at various objects on the ground. If your ability to distinguish two objects is limited only by diffraction, find the smallest separation between two objects on the ground that are distin- guishable. Assume your pupil has a diameter of 4.0 mm and take A = 575 nm.arrow_forwardWhen dots are placed on a page from a laser printer, they must be close enough so that you do not see the individual dots of ink. To do this, the separation of the dots must be less than Raleigh’s criterion. Take the pupilof the eye to be 3.0 mm and the distance from the paper to the eye of 35 cm; find the minimum separation of two dots such that they cannot be resolved. How many dots per inch (dpi) does this correspond to?arrow_forwardYou've got binoculars with 28-mm-diameter lenses. You're observing two bees on a flower 840 m distant. What's the minimum separation between the bees for you to be able to resolve them as two distinct insects? Assume visible light with 590-nm wavelength.arrow_forward
- Consider the following. (a) Find the angle ? locating the first minimum in the Fraunhofer diffraction pattern of a single slit of width 0.182 mm, using light of wavelength 581 nm.(b) Find the angle locating the second minimum.arrow_forward(a) How far from some grains of red sand must you be so that you are just at the limit of resolving the grains if your pupil diameter is 3mm, the grains are spherical with radius 50μm, and the light from the gains has wavelength 650nm? (b) If the grains were blue and the light from them had wavelength 400nm instead, would the answer to (a) be larger or smaller? (c) Now let's say you are a superhero and you had x-ray vision, so you could see light that had a wavelength of 0.1nm instead. Now how far could you be from the gains of sand to just be at the limit to distinguish one grain of sand from another? (with the same pupil diameter). (assume you're on the beach and there's plenty of light from many frequencies bouncing off the sand, and when you turn on your x-ray vision you aren't bothered by all the other frequencies around).arrow_forwardSuppose that two points are separated by 2.0 cm. If they are viewed by an eye with a pupil opening of 5.0 mm, what distance from the viewer puts them at the Rayleigh limit of resolution? Assume a light wavelength of 500 nm.arrow_forward
- pls helparrow_forwardThe limit to the eye's acuity is actually related to diffraction by the pupil. What is the angle between two just-resolvable points of light for a 2.75 mm diameter pupil, assuming the average wavelength of 539 nm? angle between two points of light: Take the result to be the practical limit for the eye. What is the greatest possible distance a car can be from a person if he or she can resolve its two headlights, given they are 1.40 m apart? greatest distance at which headlights can be distinguished: m What is the distance between two just-resolvable points held at an arm's length (0.900 m) from a person's eye? distance between two points 0.900 m from a person's eye: marrow_forwardAn amateur astronomer wants to build a telescope with a diffraction limit that will allow him to see if there are people on the moons of Jupiter. (a) What diameter mirror is needed to be able to see 1.00 m detail on a Jovian Moon at a distance of 7.50×108 km from Earth? The wavelength of light averages 600 nm. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON