A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
10th Edition
ISBN: 9780134753119
Author: Sheldon Ross
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question

I need help with part b here

T
0.1
0.2
0.3
0 0.9048 0.8187 0.7408
1 0.9953 0.9825
0.9998
1.0000
2
3
4
5
6
T
3
4
5
6
7
8
9
10
T
1.0
1.5
0
0.3679 0.2231
1
0.7358
2 0.9197
11
12
13
14
15
16
0.1
T
Poisson Probability Sums p(x;µ)
0.9999
1.0000
0.9989 0.9964
0.9999 0.9997
1.0000 1.0000
0.2
0.5578
0.8088
0.9810 0.9344
1.0
0.9963 0.9814
0.9994
0.4
0.6
0.9
0.6065 0.5488
0.4066
0.7725
0.6703
0.9631 0.9384 0.9098 0.8781 0.8442
0.9921 0.9856 0.9769 0.9659
0.9992 0.9982 0.9966
0.9996
0.9526 0.9371
0.9942
0.9909
0.9865
0.9999 0.9998
0.9992 0.9986
0.9977
1.0000 1.0000
1.0000
0.9999 0.9998
0.9997
1.0000 1.0000
1.0000
0.7
0.8
0.9
0.3
1.5
0.9473
0.9955 0.9834
2=0
2.0
2.5
0.1353
0.0821
0.4060
0.2873
0.6767
0.5438
0.8571 0.7576
0.4
2.0
"
0.5
0.5
"
f
3.0
0.9991 0.9955 0.9858 0.9665
0.9998 0.9989
1.0000
0.0498
0.1991
0.4232
0.6472
0.8912 0.8153
0.9580 0.9161
2.5
1.0000 0.9999
1.0000
0.6
0.9347 0.8893 0.8311
0.9733
0.9489 0.9134
0.9958 0.9881
0.9998 0.9989 0.9962 0.9901
1.0000 0.9997 0.9989 0.9967
0.9786 0.9597
0.9919 0.9829
0.9999 0.9997
0.9933
3.0
"
0.7
0.8
0.4966 0.4493
0.8088
3.5
4.0
4.5
5.0
0.0302
0.0183 0.0111
0.0067
0.1359 0.0916
0.0611
0.0404
0.3208 0.2381 0.1736 0.1247
0.5366 0.4335
0.3423
0.2650
0.7254 0.6288 0.5321
0.8576 0.7851
0.7029
0.9990 0.9972
0.9991 0.9976
0.9997
0.9999 0.9997 0.9992
1.0000
0.9999 0.9997
1.0000 0.9999
1.0000
3.5
4.0
4.5
0.4405
0.6160
0.7622
0.8666
0.9319
0.9682
0.9863
0.9945
0.9980
0.9993
0.9998
0.9999
1.0000
5.0
expand button
Transcribed Image Text:T 0.1 0.2 0.3 0 0.9048 0.8187 0.7408 1 0.9953 0.9825 0.9998 1.0000 2 3 4 5 6 T 3 4 5 6 7 8 9 10 T 1.0 1.5 0 0.3679 0.2231 1 0.7358 2 0.9197 11 12 13 14 15 16 0.1 T Poisson Probability Sums p(x;µ) 0.9999 1.0000 0.9989 0.9964 0.9999 0.9997 1.0000 1.0000 0.2 0.5578 0.8088 0.9810 0.9344 1.0 0.9963 0.9814 0.9994 0.4 0.6 0.9 0.6065 0.5488 0.4066 0.7725 0.6703 0.9631 0.9384 0.9098 0.8781 0.8442 0.9921 0.9856 0.9769 0.9659 0.9992 0.9982 0.9966 0.9996 0.9526 0.9371 0.9942 0.9909 0.9865 0.9999 0.9998 0.9992 0.9986 0.9977 1.0000 1.0000 1.0000 0.9999 0.9998 0.9997 1.0000 1.0000 1.0000 0.7 0.8 0.9 0.3 1.5 0.9473 0.9955 0.9834 2=0 2.0 2.5 0.1353 0.0821 0.4060 0.2873 0.6767 0.5438 0.8571 0.7576 0.4 2.0 " 0.5 0.5 " f 3.0 0.9991 0.9955 0.9858 0.9665 0.9998 0.9989 1.0000 0.0498 0.1991 0.4232 0.6472 0.8912 0.8153 0.9580 0.9161 2.5 1.0000 0.9999 1.0000 0.6 0.9347 0.8893 0.8311 0.9733 0.9489 0.9134 0.9958 0.9881 0.9998 0.9989 0.9962 0.9901 1.0000 0.9997 0.9989 0.9967 0.9786 0.9597 0.9919 0.9829 0.9999 0.9997 0.9933 3.0 " 0.7 0.8 0.4966 0.4493 0.8088 3.5 4.0 4.5 5.0 0.0302 0.0183 0.0111 0.0067 0.1359 0.0916 0.0611 0.0404 0.3208 0.2381 0.1736 0.1247 0.5366 0.4335 0.3423 0.2650 0.7254 0.6288 0.5321 0.8576 0.7851 0.7029 0.9990 0.9972 0.9991 0.9976 0.9997 0.9999 0.9997 0.9992 1.0000 0.9999 0.9997 1.0000 0.9999 1.0000 3.5 4.0 4.5 0.4405 0.6160 0.7622 0.8666 0.9319 0.9682 0.9863 0.9945 0.9980 0.9993 0.9998 0.9999 1.0000 5.0
On average, 2.5 traffic accidents per month occur at a certain intersection. Complete parts (a) through (c) below.
Click here to view the table of Poisson probability sums.
(a) What is the probability that exactly 2 accidents will occur in any given month at this intersection?
The probability that exactly 2 accidents will occur in any given month at this intersection is 0.2565
(Round to four decimal places as needed.)
(b) What is the probability that fewer than 5 accidents will occur in any given month at this intersection?
The probability that fewer than 5 accidents will occur in any given month at this intersection is
(Round to four decimal places as needed.)
expand button
Transcribed Image Text:On average, 2.5 traffic accidents per month occur at a certain intersection. Complete parts (a) through (c) below. Click here to view the table of Poisson probability sums. (a) What is the probability that exactly 2 accidents will occur in any given month at this intersection? The probability that exactly 2 accidents will occur in any given month at this intersection is 0.2565 (Round to four decimal places as needed.) (b) What is the probability that fewer than 5 accidents will occur in any given month at this intersection? The probability that fewer than 5 accidents will occur in any given month at this intersection is (Round to four decimal places as needed.)
SAVE
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
bartleby
Unlock instant AI solutions
Tap the button
to generate a solution
Click the button to generate
a solution