College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Oil is flowing through a pipeline at a speed of 1.56m/s. If the diameter of the pipe is 0.48m, what is the volumetric flow rate?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Water is moving at a velocity of 2.00 m/s through a hose with an internal diameter of 1.60 cm. (a) What is the flow rate in liters per second? (b) The fluid velocity in this hose’s nozzle is 15.0 m/s. What is the nozzle’s inside diameter?arrow_forward81. ssm mmh A pressure difference of 1.8 × 10° Pa is needed to drive water (7 = 1.0 × 10-³ Pa · s) through a pipe whose radius is 5.1 × 10-³m. The volume flow rate of the water is 2.8 × 10-ª m³/s. What is the length of the pipe?arrow_forwardWater is flowing into a factory in a horizontal cylindrical pipe with a radius of 0.0193 m at ground level.This pipe is then connected to another horizontal cylindrical pipe with a radius of 0.0360 m on a floor of the factory that is h = 12.6 m higher.The connection is made with a vertical section of pipe and an expansion joint.Determine the volume flow rate that will keep the pressure in the two horizontal pipes the same. m3/sarrow_forward
- A liquid is flowing through a horizontal pipe whose radius is 0.0301 m. The pipe bends straight upward through a height of 8.80 m and joins another horizontal pipe whose radius is 0.0726 m. What volume flow rate will keep the pressures in the two horizontal pipes the same? Number Units 202arrow_forwardIt is a fact that blood flows more rapidly in the aorta than in the capillaries. The cross sectional area of the aorta must be ___________ the total cross sectional area of the capillaries. less than equal to greater than Consider an incompressible liquid flowing in a pipe of constant diameter. ΔP is the pressure difference between the 2 ends of the pipe. Choose the correct statement regarding the volumetric flow. It will decrease with increased ΔP, and increase with greater pipe radius. It will increase with increased ΔP, and increase with greater length of the pipe. it will decrease with greater length of the pipe, and increase with greater pipe radius. it will decrease with increased viscosity of the liquid, and decrease with greater pipe radius.arrow_forwardA pipe with a radius of 51 cm has water flowing at 5.3 m/s. If water goes into a new pipe with radius 21 cm, how much will the pressure decrease? ΔΡ- unit Paarrow_forward
- At 20°C, the viscosity of water is 1.0x10-3 Pa-s and the viscosity of molasses is 51 Pa-s. Consider two tubes of the same length L, with fixed pressure difference Ap across each pipe. If water flows through Pipe 1 and molasses flows through Pipe 2, and both have the same flow rate Q, what is the ratio of the radius of Pipe 2 to Pipe 1?arrow_forwardAn aorta has an inside diameter of 1.6 cm and carries blood at speeds of up 30 cm/s. What is the speed of the blood if plaque on the artery’s walls has reduced its diameter by 60 %?arrow_forwardIf you were to break the 64 mm capillary in half and repeat the flow rate measurement with water, how would your measured values change?arrow_forward
- A typical blood pressure is 120 mm Hg. How high above the injection site would you need to hang an IV bag so that the fluid enters the blood stream at this pressure? Assume the IV fluid has a density of 1000 kg/m3. Remember, 1 mm Hg = 133 Paarrow_forwardOil (p = 920 kg/m³) is flowing through a pipeline at a speed of 1.88 m/s. If the diameter of the pipe is 0.16 m, what is the %3D mass flow rate? kg/sarrow_forwardIntravenous infusions are usually made with the help of the gravitational force. Assuming that the density of the fluid being administered is 1.00 g/ml, at what height should the IV bag be placed above the entry point so that the fluid just enters the vein if the blood pressure in the vein is 18 mm Hg above atmospheric pressure? Assume that the IV bag is collapsible.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON