Physics for Scientists and Engineers, Technology Update (No access codes included)
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

bartleby

Concept explainers

Question
**Question 4:** Rocker Rob enters from stage left at a speed of 5 m/s and slides to a rest over a distance of 2 m. What is the coefficient of kinetic friction between his socked-feet and the marley stage floor below?

---

*Explanation for Educational Purposes:*

In this physics problem, we're asked to calculate the coefficient of kinetic friction. Here's how you can solve it:

1. **Identify the Given Data:**
   - Initial velocity (v_i) = 5 m/s
   - Final velocity (v_f) = 0 m/s (because he comes to rest)
   - Distance (d) = 2 m

2. **Understand the Concept:**
   - The kinetic friction opposes the motion, causing Rob to decelerate and eventually stop.
   - Use the equation of motion and the relationship between frictional force and deceleration to find the coefficient of kinetic friction (\( \mu_k \)).

3. **Relevant Equations:**
   - \( v_f^2 = v_i^2 + 2a \cdot d \)
   - Force of friction \( f_k = \mu_k \cdot N \)
   - \( f = m \cdot a \) (Newton's second law)

4. **Calculate the Deceleration:**
   - Rearrange the first equation to find acceleration (a):
     \[ 0 = (5 \, \text{m/s})^2 + 2a \cdot 2 \, \text{m} \]
     \[ 0 = 25 + 4a \]
     \[ a = -\frac{25}{4} \, \text{m/s}^2 = -6.25 \, \text{m/s}^2 \]

5. **Solve for the Coefficient of Kinetic Friction:**
   - Assume normal force \( N = m \cdot g \) (where g = 9.8 m/s²). For simplification, mass (m) will cancel out:
   - \( f_k = \mu_k \cdot mg = m \cdot a \)
   - \(\mu_k \cdot g = -a\)
   - \(\mu_k = \frac{-a}{g} = \frac{6.25}{9.8}\)
   - \(\mu_k
expand button
Transcribed Image Text:**Question 4:** Rocker Rob enters from stage left at a speed of 5 m/s and slides to a rest over a distance of 2 m. What is the coefficient of kinetic friction between his socked-feet and the marley stage floor below? --- *Explanation for Educational Purposes:* In this physics problem, we're asked to calculate the coefficient of kinetic friction. Here's how you can solve it: 1. **Identify the Given Data:** - Initial velocity (v_i) = 5 m/s - Final velocity (v_f) = 0 m/s (because he comes to rest) - Distance (d) = 2 m 2. **Understand the Concept:** - The kinetic friction opposes the motion, causing Rob to decelerate and eventually stop. - Use the equation of motion and the relationship between frictional force and deceleration to find the coefficient of kinetic friction (\( \mu_k \)). 3. **Relevant Equations:** - \( v_f^2 = v_i^2 + 2a \cdot d \) - Force of friction \( f_k = \mu_k \cdot N \) - \( f = m \cdot a \) (Newton's second law) 4. **Calculate the Deceleration:** - Rearrange the first equation to find acceleration (a): \[ 0 = (5 \, \text{m/s})^2 + 2a \cdot 2 \, \text{m} \] \[ 0 = 25 + 4a \] \[ a = -\frac{25}{4} \, \text{m/s}^2 = -6.25 \, \text{m/s}^2 \] 5. **Solve for the Coefficient of Kinetic Friction:** - Assume normal force \( N = m \cdot g \) (where g = 9.8 m/s²). For simplification, mass (m) will cancel out: - \( f_k = \mu_k \cdot mg = m \cdot a \) - \(\mu_k \cdot g = -a\) - \(\mu_k = \frac{-a}{g} = \frac{6.25}{9.8}\) - \(\mu_k
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning