College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Nuclear-pumped x-ray lasers are seen as a possible
weapon to destroy ICBM booster rockets at ranges up to 2000 km. One limitation on such a device is the spreading of the beam due to
diffraction, with resulting dilution of beam intensity. Consider such
a laser operating at a wavelength of 1.40 nm. The element that
emits light is the end of a wire with diameter 0.200 mm.
(a) Calculate the diameter of the central beam at a target 2000 km
away from the beam source. (b) What is the ratio of the beam intensity
at the target to that at the end of the wire? (The laser is
fired from space, so neglect any atmospheric absorption.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A certain device for analyzing electromagnetic radiation is based on the Bragg scattering of the radiation from a crystal. For radiation of wavelength 0.149 nm, the first-order Bragg peak appears centered at an angle of 15.15°. The aperture of the analyzer passes radiation in the angular range of 0.015°. What is the corresponding range of wavelengths passing through the analyzer?arrow_forwardProblem 3. A Fabry-Perot laser cavity is made of two identical mirrors. Each miror has an optical power reflectance R=0.999. The distance between the two mirrors is d=10 cm. The laser cavity is filled a gas material as the gain medium with an index of refraction n=1.05. (a) What is the photon life time of this laser cavity? (b) In order to make a laser using this cavity, you need to pump the gain medium to have a gain for compensating the losses at two mirrors. What is the threshold gain coefficient for this laser?arrow_forwardThe red lasers used to read the barcodes of products at the grocery stores produce light with a wavelength of 633 nm. The electrical power consumption of a single grocery store laser is 5.00000 × 10-3 J s-1. If the laser is left on continuously for 365 days, what is the total amount of energy it emits as light? Assume that the laser works at 100% efficiency (i.e. all the electrical energy is converted to 633 nm light). Final answer should be in joules and with 6 significant digitsarrow_forward
- A laser with 589 nm wavelength and a beam diameter of 2 mm is fed through a beam-expander, then aimed from the building A to the Building B at a distance of 2.75 km. What expansion factor is required for the beam-expander in order that the diffraction-limited spot at Canary Wharf tower has a diameter of 30 cm (defined as the diameter of the first dark ring) ?arrow_forwardPhotons with a wavelength of 519 nm in air enter a plate of flint glass with index of refraction n = 1.66. Find the speed, wavelength, and energy of a photon in the glass. (a) speed (in m/s) m/s (b) wavelength (in m) m (c) energy (in J)arrow_forwardHigh-power lasers are used to compress a plasma (a gas of charged particles) by radiation pressure. A laser generating radiation pulses with peak power 1200 MW is focused onto 0.80 mm² of high-electron-density plasma. Find the pressure exerted on the plasma if the plasma reflects all the light beams directly back along their paths. Number Unitsarrow_forward
- The dispersion curve of glass is the curve that describes how the index of refraction of glass changes as a function of the wavelength. This curve can be represented approximately by Cauchy's empirical equation, n = A + B/2² where for a specific glass in question A = 1.40 and B = 2.5 × 10 nm² (yes, those units are nanometer squared). Find the phase and group velocities for light of 500nm wavelength in that glass.arrow_forwardPhotons with a wavelength of 579 nm in air enter a plate of flint glass with index of refraction n = 1.66. Find the energy in Joules of a photon in the glass.arrow_forwardA laser beam of power 6.0 W and diameter of 2.0 mm is directed upward at a highly reflective oil droplet of density 0.85 g/cm^3. What maximum radius droplet can be levitated by the radiation pressure of the laser beam?arrow_forward
- (a) What is the energy in joules of an x-ray photon with wavelength 3.08 x 10-10 m? (b) Convert the energy to electron volts. kev (c) If more penetrating x-rays are desired, should the wavelength be increased or decreased? O increased decreased (d) Should the frequency be increased or decreased? increased O decreasedarrow_forwardCalculate the interplanar spacing (in picometers) that corresponds to diffracted beams of X-rays at θ = 27.4o, if the X-rays have a wavelength of 141 pm. Assume n = 1.arrow_forwardA light beam of wavelength λ= 500 nm, beam diameter 5 mm and intensity I is propagating in a medium. The absorption cross section of the medium is 2.3×10-19 cm-2 and upper-level lifetime is 10 µs. Calculate the power of the light beam that make the absorption coefficient of the medium (α) decays to 50% of its initial value (αo).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON