College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Neutron stars are extremely dense objects that are formed from the remnants of supernova explosions. Many rotate very rapidly. Suppose the mass of a certain spherical neutron star is twice the mass of the Sun and its radius is 10.0 km. Determine the greatest possible angular speed the neutron star can have so that the matter at its surface on the equator is just held in orbit by the gravitational force.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a) Calculate the angular momentum (in kg · m2/s) of Mercury in its orbit around the Sun. (The mass of Mercury is 3.300 ✕ 1023 kg, the orbital radius is 5.790 ✕ 107 km and the orbital period is 0.241 y.) kg · m2/s (b) Compare this angular momentum with the angular momentum of Mercury on its axis. (The radius of Mercury is 2.440 ✕ 103 km and the rotation period is 1408 h.) Lorbital Lrotation =arrow_forwardConsider a rod of total length 4 m that is free to pivot above its center. The linear mass density of the rod is given by λ(x) = 6 x4 (kg/m), where x is the distance from the center of the rod. The rod is in outer space, so you don't have to worry about any gravitational torques. There is a 168 N force that acts perpendicularly to the rod at its right end, and there is a 512 N force that acts halfway between the left end of the rod and its center. This force acts at an angle of 33 degrees to the vertical. This scenario is shown below: Calculate the angular acceleration of the rod, in rad/s2. The answer could be positive or negative. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardA small, spherical asteroid of mass 6500000 kg and radius 7.6 m is stationary. The unsuspecting space rock is tangentially impacted by a Tesla roadster (mass 1320 kg) going 119000 km/h. In the following questions, assume the asteroid is uniform density and the coordinate system is set at the center of the asteroid, with the z direction aligned with its rotation axis post-impact. a) What is the magnitude of the car's linear momentum? IP carl | carl = b) What is the magnitude of the angular momentum of the car relative to the rotation axis of the asteroid just before impact? wf = kg m/s = kg m²/s c) After impact, assume the car sticks to the side of the asteroid, and treat it as a point mass. If angular momentum is conserved, what is the final angular velocity of the asteroid? rad/sarrow_forward
- A uniform solid sphere of radius R = 3.5 km produces a gravitational acceleration of ag on its surface. At what distance from the sphere's center are there points (a) inside and (b) outside the sphere where the gravitational acceleration is ag/7? (a) Number i (b) Number Units Unitsarrow_forwardA star has a mass of 1.03 x 1030 kg and is moving in a circular orbit about the center of its galaxy. The radius of the orbit is 2.4 x 104 light-years (1 light-year = 9.5 x 1015 m), and the angular speed of the star is 1.0 x 10-15 rad/s. (a) Determine the tangential speed of the star. (b) What is the magnitude of the net force that acts on the star to keep it moving around the center of the galaxy?arrow_forwardA person of mass M stands on a bathroom scale inside a Ferris wheel compartment. The Ferris wheel has radius R and angular velocity w. What is the apparent weight of the person (a) at the top and (b) at the bottom? Please explain.arrow_forward
- (a) Calculate the angular momentum (in kg • m2/s) of Neptune in its orbit around the Sun. (The mass of Neptune is 1.020 x 1026 kg, the orbital radius is 4.497 x 109 km and the orbital period is 165 y.) kg · m2/s (b) Compare this angular momentum with the angular momentum of Neptune on its axis. (The radius of Neptune is 2.476 x 104 km and the rotation period is 16.11 h.) Lorbital Lrotationarrow_forwardA star originates as a large body of slowly rotating gas.Because of gravitational attraction, this large body of gas slowly decreases in size.You can assume that no external forces are acting.Which one of the following statements correctly describes what happens as the radius of the body of gas decreases? Both the moment of inertia and the angular velocity increase. Both the angular momentum and the angular velocity increase. The angular momentum increases and the angular velocity decreases. Both the angular momentum and the angular velocity decrease. The angular momentum remains constant and the angular velocity increases.arrow_forwardA star has a mass of 2.62 x 10³0 kg and is moving in a circular orbit about the center of its galaxy. The radius of the orbit is 3.0 x 104 light-years (1 light-year = 9.5 x 1015 m), and the angular speed of the star is 1.6 x 10-15 rad/s. (a) Determine the tangential speed of the star. (b) What is the magnitude of the net force that acts on the star to keep it moving around the center of the galaxy? (a) Number i (b) Number i Units Unitsarrow_forward
- The end state of our sun will most likely be a white dwarf star. It would have about one fourth of its current mass and a radius about two percent of its current radius. The Sun today takes 30 days to rotate once about its internal spin axis. This is equivalent to an angular speed of 2.42 x 10-6 rad/s. Its moment of inertia today can be approximated as 3.86 x 1047 kg m². Its final angular speed will be 2.42 x 10-2 rad/s. What would its' final moment of inertia be? Select one: a. b. 1.52 x 10-55 kg m² OC. 6.59 x 1054 kg m² 3.86 x 1051 kg m² 3.86 x 1043 kg m² d.arrow_forwardLong-term space missions require some form of artificial gravity to prevent astronauts losing bone mass. One method would be to use a tether to connect a spent booster to the astronauts’ capsule and set the system rotating to provide artificial gravity in the noninertial frame of the capsule. Tests suggest that rotation rates less than 2 rpm are needed to avoid the astronauts experiencing inner-ear problems as they move about. About how long must the tether be, if you need an apparent gravitational field in the capsule of at least half of the earth’s field? (Assume that the capsule and booster have roughly the same mass.) The tether must be about ________m long.arrow_forwardTitan completes one orbit about Saturn in 15.9 days and the average Saturn-Titan distance is 1.22 x 10° m. Calculate the angular speed o of Titan as it orbits Saturn. rad/s =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON