Movement of glucose down its concentration gradient into cells is facilitated by Select one: a. Active transport b. Diffusion across phospholipids c. Facilitated transport d. a protein that consumes ATP e. a protein that gets phosphorylated
Electron Transport Chain
The electron transport chain, also known as the electron transport system, is a group of proteins that transfer electrons through a membrane within mitochondria to create a gradient of protons that drives adenosine triphosphate (ATP)synthesis. The cell uses ATP as an energy source for metabolic processes and cellular functions. ETC involves series of reactions that convert redox energy from NADH (nicotinamide adenine dinucleotide (NAD) + hydrogen (H)) and FADH2(flavin adenine dinucleotide (FAD)) oxidation into proton-motive force(PMF), which is then used to synthesize ATP through conformational changes in the ATP synthase complex, a process known as oxidative phosphorylation.
Metabolism
Picture a campfire. It keeps the body warm on a cold night and provides light. To ensure that the fire keeps burning, fuel needs to be added(pieces of wood in this case). When a small piece is added, the fire burns bright for a bit and then dies down unless more wood is added. But, if too many pieces are placed at a time, the fire escalates and burns for a longer time, without actually burning away all the pieces that have been added. Many of them, especially the larger chunks or damp pieces, remain unburnt.
Cellular Respiration
Cellular respiration is the cellular process involved in the generation of adenosine triphosphate (ATP) molecules from the organic nutritional source obtained from the diet. It is a universal process observed in all types of life forms. The glucose (chemical formula C6H12O6) molecules are the preferred raw material for cell respiration as it possesses a simple structure and is highly efficient in nature.
We know that a plasma membrane is a selectively permeable structure. Most biomolecules are unable to diffuse through the phospholipid bilayer. Small non-polar molecules like O2 dissolved in the synthetic lipid bilayer, are highly impermeable to charged molecules.
Transport across the plasma membrane occurs through the lipid bilayer or through the transport protein.
There are two types of transport that occur across the plasma membrane :
- Passive transport: It occurs along the concentration gradient. It is further classified into simple and facilitated diffusion.
- Active transport: It occurs against the concentration gradient.
Step by step
Solved in 2 steps