College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
- Monochromatic blue light with a wavelength of 483 nm falls on a single slit and produces a pattern with a central bright band that is 21 mm wide. The slit is located 94 cm from a screen. How wide is the slit?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A laser light source with wavelength λ = 545 nm is incident on a diffraction grating (as in the figure). The grating has 495 slits per mm. An observation screen is a distance L = 0.35 m from the grating. What is the separation between individual slits in the grating? Be careful with units: 1 nm = 10-9 m, 1 mm = 10-3 m, and 1 cm = 10-2 m. d = nm What is the distance y along the screen where the first-order diffraction peak is observed? y= cm source grating m=1arrow_forwardA screen is placed 50.0 cm from a single slit that is illuminated with light of wavelength 680 nm. If the distance between the first and third minima in the diffraction pattern is 3.00 mm, what is the width of the slit?arrow_forwardAn instructor directs monochromatic light toward a single slit in an opaque barrier. The light has a wavelength of 550 nm and the slit is 0.230 mm wide. The light that passes through the slit creates a diffraction pattern on a screen, which is 1.65 m from the slit. (a) How wide (in mm) is the central maximum (the central, bright fringe), as measured on the screen? Single-slit diffraction is most readily described with a formula that gives the distance from the center of the pattern to the mth-order dark fringe. Consider the first dark fringe on either side of the central peak (m = ±1). How does its distance relate to the full width of the central maximum? Take care with units. mm (b) How wide (in mm) is either of the two first-order bright fringes, as measured on the screen? Single-slit diffraction is most readily described with a formula that gives the distance from the center of the pattern to the mth-order dark fringe. Consider two adjacent fringes on one side of the…arrow_forward
- The width of a slit is 3.0 x 105 m. Light with a wavelength of 420 nm passes through this slit and falls on a screen that is located 0.65 m away. In the diffraction pattern, find the width of the bright fringe that is next to the central bright fringe. Second dark fringe First dark fringe Number Single slit Units Bright fringe- Bright fringe Central bright fringe First dark fringe Second dark fringe Screenarrow_forwardIn a double-slit interference experiment, the light source is a visible laser with wavelength 4.31E-7 m, the distance between slits is 9.51E-4m, and a screen is 2.09 m away from the slits. What is the distance between the central bright fringe and a dark fringe resulting from a 5π phase difference between light from the two slits (in m)?arrow_forwardGreen light (λ = 546 nm) strikes a single slit at normal incidence. What width slit will produce a central maximum that is 2.75 cm wide on a screen 1.80 m from the slit?arrow_forward
- Two slits space 0.580 mm apart are placed 72.0 cm from a screen. What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 500 nm?arrow_forwardIn a single slit diffraction experiment, the width of the slit is 3.1 x 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through the slit and forms a diffraction pattern on the screen, what is the linear distance on the screen from the center of the diffraction pattern to the first dark fringe? 6.3 cm 7.4 cm 4.3 cm O 8.5 cmarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON