Mike is trying to determine the amount of work his experimental air compressor is doing. He finds that the amount of work done (W) depends on the rate of change in pressure created by the pump (dP/dt) with respect to time, the volume of air inside the pump (V), and the speed at which air moves out of the pump (v). Part (a) After an initial test run Mike determines that his pump does 280 J of work (W1). Calculate the amount of work (W2) in J that Mike would expect his pump to do if its volume were 3.5 times greater. W2 = ______ Part (b) If Mike wanted to reduce the volume of his pump by a factor of 6.5, yet keep it doing the same amount of work at the same airspeed, by what numerical factor (B) would he have to increase the rate of change in pressure (dP/dt) his pump creates? B = ______
Problem 7: Mike is trying to determine the amount of work his experimental air compressor is doing. He finds that the amount of work done (W) depends on the rate of change in pressure created by the pump (dP/dt) with respect to time, the volume of air inside the pump (V), and the speed at which air moves out of the pump (v).
Part (a) After an initial test run Mike determines that his pump does 280 J of work (W1). Calculate the amount of work (W2) in J that Mike would expect his pump to do if its volume were 3.5 times greater.
W2 = ______
Part (b) If Mike wanted to reduce the volume of his pump by a factor of 6.5, yet keep it doing the same amount of work at the same airspeed, by what numerical factor (B) would he have to increase the rate of change in pressure (dP/dt) his pump creates?
B = ______
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images