College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Medium 1 is made of silicon and medium 2 is made of glass. Their refractive indices are 3.3 and 1.3 respectively. For an angle of refraction of 30.5 degrees, determine the angle of incidence.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As shown in the figure, a light beam travels from air, through olive oil, and then into water. If the angle of refraction ?2 for the light in the olive oil is 30.8°, determine the angle of incidence ?1 in air and the angle of refraction ?3 in water. The index of refraction for olive oil is 1.47. ?1 = ° ?2 = °arrow_forwardA light propagates in Material 1 with index of refraction n1 = 1.13, strikes an interface, then passes into Material 2 with an index of refraction n2 = 1.41. The angle of incidence at the interface is 27.5. Determine the angle of refractionarrow_forwardA light ray travelling in medium a is refracted into medium b. The angle of incidence is 50.5° and the angle or refraction is 60.8°. Both angles are measured from the normal to the interface. What is the ratio of the index of refraction of medium a to that of medium b?arrow_forward
- Light travels from air into an optical fiber with an index of refraction of 1.44. If the angle of incidence on the end of the fiber is 25o, what is the angle of refraction inside the fiber?arrow_forwardA beaker with a mirrored bottom is filled with a liquid whose index of refraction is nliq = 2.37. A light ray from air strikes the top surface of the liquid at an incident angle θin = 72.9° from the normal line to the liquid surface, as shown in the figure. What is the refraction angleθ1 of the light ray as it enters the liquid (in degrees; remember to use the scientific notation of numbers)?arrow_forwardThe drawing shows a ray of light traveling through three materials whose surfaces are parallel to each other. The refracted rays (but not the reflected rays) are shown as the light passes through each material. A ray of light strikes the a-b interface at a 50.0° angle of incidence. The index of refraction of material a is na = 1.20. The angles of refraction in materials b and care, respectively, 40.4° and 58.2°. Find the indices of refraction in these two media. nb = Number nc = Number i i Units Units Q b > > сarrow_forward
- As shown in the figure, a light beam travels from air, through olive oil, and then into water. If the angle of refraction 0, for the light in the olive oil is 29.6°, determine the angle of incidence 0, in air and the angle of refraction 03 in water. The index of refraction for olive oil is 1.47. 0, = 83 = air n2 oil 13 waterarrow_forwardAir has an index of refraction of 1.00. Water has an index of refraction of 1.33. Consider a pool of water that is perfectly calm and 3.21 meters deep. A ray of light (or a laser beam, if you like) enters the water, refracts, and ultimately hits the bottom of the pool. Find the distance between the point where the light enters the water and the point where the light hits the bottom of the pool if the angle between the ray in air and the surface of the pool is 46.4 degrees. Answer in meters.arrow_forwardThe refractive index of a transparent material can be determined by measuring the critical angle when the solid is in air. If 0c = 20° what is the index of refraction of the material? с Units no units required The index of refraction, n = What will be the critical angle when the same material is immersed in a medium with the index of refraction 1.17? The critical angle, 0c = Units degarrow_forward
- Using filters, a physicist has created a beam of light consisting of three wavelengths: 400 nm (violet), 500 nm (green), and 650 nm (red). She aims the beam so that it passes through air and then enters a block of crown glass. The beam enters the glass at an incidence angle of ?1 = 31.5°. The glass block has the following indices of refraction for the respective wavelengths in the light beam. wavelength (nm) 400 500 650 index of refraction n400 nm = 1.53 n500 nm = 1.52 n650 nm = 1.51 (a) Upon entering the glass, are all three wavelengths refracted equally, or is one bent more than the others? (b) What are the respective angles of refraction (in degrees) for the three wavelengths? (Enter each value to at least two decimal places.) (i) ?400 nm (ii) ?500 nm (iii) ?650 nmarrow_forwardA ray of light hits the surface between air and an unknown material at an angle A of 58.8°. It travels through the unknown material at an angle B of 38.5° relative to the vertical. What is the index of refraction of the material?arrow_forwardA layer of oil (n = 1.45) floats on an unknown liquid. A ray of light originates in the oil and passes into the unknown liquid. The angle of incidence is 60.9 degrees, and the angle of refraction is 69.2 degrees. What is the index of refraction of the unknown liquid?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON