Many students consider problems involving ramps (inclined planes) to be especially hard. The difficulty is probably visual because we work with (a) a tilted coordinate system and (b) the components of the gravitational force, not the full force. Here is a typical example with all the tilting and angles explained. (In WileyPLUS, the figure is available as an animation with voiceover.) In spite of the tilt, the key idea is to apply Newton’s second law to the axis along which the motion occurs. a cord pulls a box of sea biscuits up along a frictionless plane inclined at angle u= 30.0. The box has mass m = 5.00 kg, and the force from the cord has magnitude T = 25.0 N.What is the box’s acceleration a along the inclined plane?
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.
Many students consider problems involving ramps (inclined
planes) to be especially hard. The difficulty is probably visual
because we work with (a) a tilted coordinate system and (b) the
components of the gravitational force, not the full force. Here is
a typical example with all the tilting and angles explained. (In
WileyPLUS, the figure is available as an animation with
voiceover.) In spite of the tilt, the key idea is to apply Newton’s
second law to the axis along which the motion occurs.
a cord pulls a box of sea biscuits up along a
frictionless plane inclined at angle u= 30.0. The box has
mass m = 5.00 kg, and the force from the cord has magnitude
T = 25.0 N.What is the box’s acceleration a along the
inclined plane?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images