Manually train a hypothesis function h(x) = g(ỗ¹x) based on the following training instances using stochastic gradient ascent rule. The initial values of parameters are 0o = 0.1,0₁ = 0.1, 0₂ = 0.1. The learning rate a is 0.1. Please update each parameter at least five times. X1 0 0 1 1 X2 0 1 0 1 y 1 1 0 0

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
**Training a Hypothesis Function Using Stochastic Gradient Ascent**

To manually train a hypothesis function \( h_{\vec{\theta}}(\vec{x}) = g(\vec{\theta}^T \vec{x}) \), we will apply the stochastic gradient ascent rule with the given dataset. The starting values for the parameters are:

- \(\theta_0 = 0.1\)
- \(\theta_1 = 0.1\)
- \(\theta_2 = 0.1\)

The learning rate \(\alpha\) is set at 0.1. It is necessary to update each parameter at least five times.

**Training Instances:**

\[
\begin{array}{|c|c|c|}
\hline
x_1 & x_2 & y \\
\hline
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\hline
\end{array}
\]

This table represents the input features \(x_1\), \(x_2\), and the target output \(y\) for training the model. Conduct the training by iterating over these instances while adjusting the parameters using the specified learning rate.
Transcribed Image Text:**Training a Hypothesis Function Using Stochastic Gradient Ascent** To manually train a hypothesis function \( h_{\vec{\theta}}(\vec{x}) = g(\vec{\theta}^T \vec{x}) \), we will apply the stochastic gradient ascent rule with the given dataset. The starting values for the parameters are: - \(\theta_0 = 0.1\) - \(\theta_1 = 0.1\) - \(\theta_2 = 0.1\) The learning rate \(\alpha\) is set at 0.1. It is necessary to update each parameter at least five times. **Training Instances:** \[ \begin{array}{|c|c|c|} \hline x_1 & x_2 & y \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array} \] This table represents the input features \(x_1\), \(x_2\), and the target output \(y\) for training the model. Conduct the training by iterating over these instances while adjusting the parameters using the specified learning rate.
Expert Solution
Step 1

 

: Solution ::

step: 1

 

 
Gradient Descent algorithm:-
#1. Import All Librariesimport numpy as npimport pandas as pdfrom sklearn.linear_model import Linear Regressionimport math
 
#2. Train Model Using Sklearndef
predict_using_sklean():df = pd.read_csv("test.csv")r =
Linear Regression()r.fit(df[['x1','x2']],df.y)print(r.intercept_)return r.coef_,
r.intercept_predict_using_sklean()
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Uncertainty Problems
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education