
MAKE A FLOWCHART PLEASE
clc;
clear;
function [] = Bisection(xl,xu,es,imax)
ea = 100
xr = (xu+xl)/2;
x=xr
fr=evstr(f)
while (ea>es)
a=fl-fu;
if (a==0) then
mprintf("Error: Division by Zero")
abort
end
test = fl * fr;
mprintf(" %d %10f %10f %10f %12.7f %12f %12.f %10.7f\n",iter,xl,xu,xr,fl,fu,fr,ea);
if (test<0) then
xu=xr;
elseif (test>0) then
xl=xr;
elseif (test==0) then
mprintf("\n\nThe root of the equation is %f",xr)
abort
end
x=xl
fl=evstr(f)
x=xu
fu=evstr(f)
xrold=xr
xr=(xu+xl)/2;
x=xr
fr=evstr(f)
ea=abs((xr-xrold)/xr)*100;
iter=iter+1;
test=fl*fr
if ea < es then
mprintf(" %d %10f %10f %10f %12.7f %12.f %12.f %10.7f\n",iter,xl,xu,xr,fl,fu,fr,ea);
mprintf("\n\nThe approximate root for the given function is %f",xr)
abort
end
if iter > imax
mprintf("The approximate root for the given function is %f",xrold)
mprintf("\nSlowly converges. It is suggested that the initial values should be change");
abort
end
end
endfunction
//main
disp("This program will solve/give the approximate root of any given nonlinear algebraic equations using the Bisection Method")
f=input("Input the function to be evaluated: ",'string')
xl=input("Enter the lower limit: ")
x=xl
fl=evstr(f)
if (fl==0) then
mprintf("Lower limit is the root. ")
end
xu=input("Enter an upper limit: ")
x=xu
fu=evstr(f)
if (fu==0)then
mprintf("Upper limit is the root. ")
abort
end
b = fl*fu;
if (b>0) then
mprintf("The initial guesses are invalid. f(xl)*f(xu) should be less than zero");
abort
end
es=input("Input the value of accepted tolerance of error (es): ")
imax=input("Enter the desired number of iterations: ");
iter=1
mprintf(" iter \t\txl \t \t xu \t xr \t f(xl) \t f(xu) \t\t\tf(xr) ea\n");//for output table
Bisection(xl, xu, es, imax)

Step by stepSolved in 2 steps with 1 images

- piechart1<-function(){#open function #Function to graph a pie chart #assign values to un.teenager vector un.teenager<-c("20-29","30-39","40-49","50-59","60-69","70-79") #draw a pie chart of data pie(un.teenager) }close function trying to make a pie chart in Rarrow_forwardUsing C++ Assume proper includes have been executed, but not using directive or declaration. Write a definition of an iterator for a vector named vec of int values. Write a for loop that will display the contents vec on the screen, separated by spaces. Use iterators for the loop control.arrow_forwardC++ Given code is #pragma once#include <iostream>#include "ourvector.h"using namespace std; ourvector<int> intersect(ourvector<int> &v1, ourvector<int> &v2) { // TO DO: write this function return {};}arrow_forward
- Jupyter Notebook Fixed Income - Certicificate of Deposit (CD) - Compound Interest Schedule An interest-at-maturity CD earns interest at a compounding frequency, and pays principal plus all earned interest at maturity. Write a function, called CompoundInterestSchedule, that creates and returns a pandas DataFrame, where each row has: time (in years, an integer starting at 1), starting balance, interest earned, and ending balance, for an investment earning compoundedinterest. Use a for(or while) loop to create this table. The equation for theith year's ending balance is given by: Ei =Bi (1+r/f)f where: Ei is year i's ending balance Bi is year i's beginning balance (note: B1 is the amount of the initial investment (principal) r is the annual rate of interest (in decimal, e.g., 5% is .05) f is the number of times the interest rate compounds (times per year) The interest earned for a given year is Ei - Bi Note the term of the investment (in years) is not in the above equation; it is used…arrow_forward] ] has_perfect You are to write a function has "perfect (graph)" that takes in a BIPARTITE graph as its input, and then determintes whether or not the graph has a perfect matching. In other words, it will return the Boolean value True if it has one, and False if it does not. After compiling the above cell, you should be able to compile the following cell and obtain the desired outputs. print (has perfect({"A" : ["B", "C"], "B" : ["A", "D"], "C" : ["A", "D"], "D" : ["B", "C"]}), has perfect ( {"A" : ["B"], "B" : ["A", "D", "E"], "C" : ["E"], "D":["B"], "E": ["B","C","F"], "F":["E"]})) This should return True False Python Pythonarrow_forwardI am trying to write a rotate function in C language.arrow_forward
- Question 5 Write the code for the function printRoster, it should print out the contacts in a format similar to the example. You can use a range-based for-loop and auto to simplify the solution, if you wish. #include #include #include #include #include using namespace std; void printRoster(map>>& roster) { // Fill code here int main() { map>> roster; roster["ELCO"]["CS-30"]. emplace_back("Anthony Davis"); roster["ElCo"]"cS-30"j. emplace_back("Talen Horton-Tucker"); roster["ElCo"Ï"BUS-101"].emplace_back("LeBron James"); roster["SMC"]["CHEM-101"].emplace_back("Russell Westbrook"); printRoster(roster); return 0; Here is the sample output: ElCo BUS-101: LeBron James CS-30: Anthony Davis Talen Horton-Tucker SMC CHEM-101: Russell Westbrookarrow_forwardCode Should Be In C++arrow_forwardErlang File -module(exam). -compile(export_all). -include_lib("eunit/include/eunit.hrl"). Part A Implement a function called min which takes a tuple of two numeric values and returns the lower value of the two.Implementation notes:• If needed, use Erlang function guards• Do NOT use the if or case structuresSample calls:> exam:min({3, 4}).3> exam:min({4, 3}).3arrow_forward
- Create a flowchart for this program in c++, #include <iostream>#include <vector> // for vectors#include <algorithm>#include <cmath> // math for function like pow ,sin, log#include <numeric>using std::vector;using namespace std;int main(){ vector <float> x, y;//vector x for x and y for y float x_tmp = -2.5; // initial value of x float my_function(float x); while (x_tmp <= 2.5) // the last value of x { x.push_back(x_tmp); y.push_back(my_function(x_tmp)); // calculate function's value for given x x_tmp += 1;// add step } cout << "my name's khaled , my variant is 21 ," << " my function is y = 0.05 * x^3 + 6sin(3x) + 4 " << endl; cout << "x\t"; for (auto x_tmp1 : x) cout << '\t' << x_tmp1;//printing x values with tops cout << endl; cout << "y\t"; for (auto y_tmp1 : y) cout << '\t' << y_tmp1;//printing y values with tops…arrow_forwardLanguage: C Write the function convolve that will calculate the confolution of two functions f, g on [0, t] interval. The convolution is defined as (f ∗ g)(t) = Z t 0 f(τ )g(t − τ ) dτ for f, g : [0, ∞) → R. The argument function f and g should be passed by pointers. The integral should be approximated by the Riemman sum, i.e., Z b a f(x) dx = Xn i=1 f(xi) ∆x, where ∆x = b−a n and xi = a + i ∆x. Define the functions func1, func2 and func3, that return sin(x), cos(x) and x 3 respectively. Use these functions to calculate the convolution of f = sin(x), g = sin(x) f = sin(x), g = cos(x) f = sin(x), g = x 3 for t = 2π and n = 1000.arrow_forwardConsider the function definition: void GetNums(int howMany, float& alpha, float& beta) { int i; beta = 0; for (i = 0; i < howMany; i++) { beta = alpha + beta; } } Describe what happens in MEMORY when the GetNums function is called.arrow_forward
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education





