MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
a. Read the Toluca.txt dataset into R (this dataset can be found on Canvas). Now fit a simple linear regression model with X = lotSize and Y = workHrs. Summarize the output from the model: the least square estimators, their standard errors, and corresponding p-values. b. Draw the
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Biologist Theodore Garland, Jr. studied the relationship between running speeds and morphology of 49 species of cursorial mammals (mammals adapted to or specialized for running). One of the relationships he investigated was maximal sprint speed in kilometers per hour and the ratio of metatarsal-to-femur length. A least-squares regression on the data he collected produces the equation ŷ = 37.67 + 33.18x where x is metatarsal-to-femur ratio and y is predicted maximal sprint speed in kilometers per hour. The standard error of the intercept is 5.69 and the standard error of the slope is 7.94. Construct a 96% confidence interval for the slope of the population regression line. Give your answers precise to at least two decimal places. contact us help 6:42 PM povecy polcy terms of use careers A E O 4») 18 -క90.4 58 12/14/2020 a 17 |耳 即 delets prt sc insert 112 19 18 + 16 backspace f5 fAarrow_forwardThe datasetBody.xlsgives the percent of weight made up of body fat for 100 men as well as other variables such as Age, Weight (lb), Height (in), and circumference (cm) measurements for the Neck, Chest, Abdomen, Ankle, Biceps, and Wrist. We are interested in predicting body fat based on abdomen circumference. Find the equation of the regression line relating to body fat and abdomen circumference. Make a scatter-plot with a regression line. What body fat percent does the line predict for a person with an abdomen circumference of 110 cm? One of the men in the study had an abdomen circumference of 92.4 cm and a body fat of 22.5 percent. Find the residual that corresponds to this observation. Bodyfat Abdomen 32.3 115.6 22.5 92.4 22 86 12.3 85.2 20.5 95.6 22.6 100 28.7 103.1 21.3 89.6 29.9 110.3 21.3 100.5 29.9 100.5 20.4 98.9 16.9 90.3 14.7 83.3 10.8 73.7 26.7 94.9 11.3 86.7 18.1 87.5 8.8 82.8 11.8 83.3 11 83.6 14.9 87 31.9 108.5 17.3…arrow_forwardIs It Getting Harder to Win a Hot Dog Eating Contest?Every Fourth of July, Nathan’s Famous in New York City holds a hot dog eating contest. The table below shows the winning number of hot dogs and buns eaten every year from 2002 to 2015, and the data are also available in HotDogs. The figure below shows the scatterplot with the regression line. Year Hot Dogs 2015 62 2014 61 2013 69 2012 68 2011 62 2010 54 2009 68 2008 59 2007 66 2006 54 2005 49 2004 54 2003 45 2002 50 Winning number of hot dogs in the hot dog eating contest Winning number of hot dogs and buns Click here for the dataset associated with this question. (a) Is the trend in the data mostly positive or negative? Positive Negative (b) Using the figure provided, is the residual larger in 2007 or 2008?Choose the answer from the menu in accordance to item (b) of the question statement 20072008 Is the residual positive or…arrow_forward
- For major league baseball teams, do higher player payrolls mean more gate money? Here are data for each of the American League teams in the year 2002. The variable x denotes the player payroll (in millions of dollars) for the year 2002, and the variable y denotes the mean attendance (in thousands of fans) for the 81 home games that year. The data are plotted in the scatter plot below, as is the least-squares regression line. The equation for this line is y = 11.43 + 0.23x. Player payroll, x (in Mean attendance, y (in $1,000,000s) thousands) Anaheim 62.8 28.52 Baltimore 56.5 33.09 40- Boston 110.2 32.72 35 Chicago White Sox 54.5 20.74 30- Cleveland 74.9 32.35 25- Detroit 54.4 18.52 Kansas City 49.4 16.30 15- Minnesota 41.3 23.70 10+ New York Yankees 133.4 42.84 Oakland 41.9 26.79 20 40 60 80 100 120 140 Seattle 86.1 43.70 Player payroll, Тarmpa Bay 34.7 13.21 X (in $1,000,000s) Техas 106.9 29.01 Toronto 66.8 20.25 Send data to calculator Send data to Excel Based on the sample data and…arrow_forwardAn engineer wants to determine how the weight of a gas-powered car, x, affects gas mileage, y. The accompanying data represent the weights of various domestic cars and their miles per gallon in the city for the most recent model year. Complete parts (a) through (d) below. Click here to view the weight and gas mileage data. (a) Find the least-squares regression line treating weight as the explanatory variable and miles per gallon as the response variable. Car Weight and MPG (Round the x coefficient to five decimal places as needed. Round the constant to two decimal places as needed.) Weight (pounds), x Miles per Gallon, y 3806 16 3796 15 2669 24 3520 18 3361 21 2911 22 3808 18 2612 24 3375 19 3737 16 3320 19arrow_forwardThe data in the table represent the number of licensed drivers in various age groups and the number of fatal accidents within the age group by gender. Complete parts (a) to (c) below. Click the icon to view the data table. C... (a) Find the least-squares regression line for males treating the number of licensed drivers as the explanatory variable, x, and the number of fatal crashes, y, as the response variable. Repeat this procedure for female Find the least-squares regression line for males. ŷ=0x+0 (Round the slope to three decimal places and round the constant to the nearest integer as needed.) Data for licensed drivers by age and gender. 21-24 25-34 35-44 45-54 55-64 65-74 > 74 Number of Male Fatal Licensed Age Drivers (000s) < 16 12 16-20 6,424 6,914 18,068 20,406 Number of Number of Female Fatal Crashes Licensed (Males) Drivers (000s) 227 12 6,139 Crashes (Females) 77 2,113 1,534 5,180 5,016 6,816 8,567 17,664 2,780 7,990 20,047 2,742 19,984 14,441 8,386 5,375 19,898 14,328 8,194…arrow_forward
- Laetisaric acid is a compound that holds promise for control of fungus diseases in crop plants. Below is the least-squares regression equation to predict fungus growth (mm) from laetisaric acid concentration (µG/ml): ŷ =31.8 -0.712x Which of the following statements is correct? A. Above-average values of laetisaric acid concentration tend to accompany above-average values of fungus growth. B. From the given regression equation, we know the correlation is negative and we can say what the exact value of that correlation is. C. When fungus growth increases by 1 mm, the laetisaric acid concentration decreases by 0.712 µG/ml. D. None of the above.arrow_forwardSuppose Wesley is a marine biologist who is interested in the relationship between the age and the size of male Dungeness crabs. Wesley collects data on 1,000 crabs and uses the data to develop the following least-squares regression line where X is the age of the crab in months and Y is the predicted value of Y, the size of the male crab in cm. Y = 8.2052 + 0.5693X What is the value of Ý when a male crab is 21.7865 months old? Provide your answer with precision to two decimal places. Interpret the value of Ý. The value of Ý is the probability that a crab will be 21.7865 months old. the predicted number of crabs out of the 1,000 crabs collected that will be 21.7865 months old. the predicted incremental increase in size for every increase in age by 21.7865 months. the predicted size of a crab when it is 21.7865 months old.arrow_forwardDraw a graph of the least-squares regression line on your scatterplot. (For hand-drawing, round the slope and y-intercept to one decimal place before drawing the line.) Be sure to show how you were able to plot the line starting with its equation. Model City Miles per Gallon Highway Miles per Gallon Acura RLX 20 29 BMW 530i 24 34 Buick LaCrosse eAssist 25 35 Chevrolet Malibu 29 36 Ford Hybrid FWD 43 41 Honda Civic 32 42 Infiniti Q50 Red Sport 20 26 Kia Forte 30 40 Lexus ES 350 22 33 Mercedes Benz AMG S 21 30 Mini Cooper Clubman 24 32 Nissan Maxima 20 30 Suburu Legacy AWD 25 34 Toyota Prius ECO 58 53arrow_forward
- Biologist Theodore Garland, Jr. studied the relationship between running speeds and morphology of 49 species of cursorial mammals (mammals adapted to or specialized for running). One of the relationships he investigated was maximal sprint speed in kilometers per hour and the ratio of metatarsal-to-femur length. A least-squares regression on the data he collected produces the equation ŷ = 37.67 + 33.18x %3D where x is metatarsal-to-femur ratio and ŷ is predicted maximal sprint speed in kilometers per hour. The standard error of the intercept is 5.69 and the standard error of the slope is 7.94. Construct an 80% confidence interval for the slope of the population regression line. Give your answers precise to at least two decimal places. Lower limit: Upper limit:arrow_forwardYou are studying how a penguin's bill length (in mm) explains its body mass (in grams) using linear regression. You choose a non-directional alternative to be safe. Given the information below, choose the formula for the least squares regression line. b₁ = 87.42 bo = 362.31 x = 43.92 y = 4202.0 O Bill Length = 87.42 Body mass + 362.31 O Bill Length = 87.42*4202.0 + 362.31 O 4202.0 = 362.31*43.92 +87.42 O Body mass = 87.42 * Bill Length + 362.31 O Body mass = 362.31 *Bill Length + 87.42 O Body mass = 362.31 43.92 + 87.42arrow_forwardAn advertising firm wishes to demonstrate to potential clients the effectiveness of the advertising campaigns it has conducted. The firm is presenting data from 12 recent campaigns, with the data indicating an increase in sales for an increase in the amount of money spent on advertising. In particular, the least-squares regression equation relating the two variables cost of advertising campaign (denoted by x and written in millions of dollars) and resulting percentage increase in sales (denoted by y) for the 12 campaigns is y = 6.18 +0.14x, and the standard error of the slope of this least-squares regression line is approximately 0.10. Using this information, test for a significant linear relationship between these two variables by doing a hypothesis test regarding the population slope B₁. (Assume that the variable y follows a normal distribution for each value of x and that the other regression assumptions are satisfied.) Use the 0.10 level of significance, and perform a two-tailed…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman