Logarithmic transformation functions can be used to compress the dynamic range of ai image in order to bring out features that were not originally as clear. & Close all open figures and clear all workspace variables. % Generate a logarithmic transformation function. clear ;clc;close all x = 0:255; c = 255 / log (256); y=c*log(x + 1); figure, plot (y),title('Log Mapping Function'), axis tight, axis square % Use the transformation function to generate the adjusted image. I = imread ('tire.tif'); I log = uint8 (v(T + 1)) :

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Shows the results of applying gamma correction to an input image using two different values of n, how does the shape of the curve change if we were to use a different value for n?

Logarithmic transformation functions can be used to compress the dynamic range of an
image in order to bring out features that were not originally as clear.
* Close all open figures and clear all workspace variables.
% Generate a logarithmic transformation function.
clear ;clc;close all
x = 0:255; c = 255 / log (256) ;
y=c*log (x + 1);
figure, plot (y),title('Log Mapping Function'), axis tight, axis square
% Use the transformation function to generate the adjusted image.
imread ('tire.tif');
= I
I_log = uint8 (y(I + 1)) ;
Figure, subplot (2,2,1), imshow (I), title('Original Image');
subplot (2,2, 2), imshow(I_log), title('Adjusted Image');
subplot (2,2,3),imhist(I),title('histogram of original image');
subplot (2,2,4), imhist(I_log), title ('histogram of log image');
% The inverse of the log function is as follows.
exp (x/c) - 1;
I_invlog
figure, subplot (3,1,1), plot (z), title ('Inverse-log Mapping Function');
subplot (3,1,2), imshow (I_invlog), title('Adjusted Image');
subplot (3,1,3), imhist(I_invlog), title ('histogram of invlog image');
= uint8 (z (I_log + 1)) ;
Transcribed Image Text:Logarithmic transformation functions can be used to compress the dynamic range of an image in order to bring out features that were not originally as clear. * Close all open figures and clear all workspace variables. % Generate a logarithmic transformation function. clear ;clc;close all x = 0:255; c = 255 / log (256) ; y=c*log (x + 1); figure, plot (y),title('Log Mapping Function'), axis tight, axis square % Use the transformation function to generate the adjusted image. imread ('tire.tif'); = I I_log = uint8 (y(I + 1)) ; Figure, subplot (2,2,1), imshow (I), title('Original Image'); subplot (2,2, 2), imshow(I_log), title('Adjusted Image'); subplot (2,2,3),imhist(I),title('histogram of original image'); subplot (2,2,4), imhist(I_log), title ('histogram of log image'); % The inverse of the log function is as follows. exp (x/c) - 1; I_invlog figure, subplot (3,1,1), plot (z), title ('Inverse-log Mapping Function'); subplot (3,1,2), imshow (I_invlog), title('Adjusted Image'); subplot (3,1,3), imhist(I_invlog), title ('histogram of invlog image'); = uint8 (z (I_log + 1)) ;
% Create a negative transformation function and show the result after applied to the
moon image.
imread('moon.tif');
= uint8(255:-1:0);
y
I_neg
y (I + 1);
figure, subplot(1,3,1), plot(y),title('Transformation Function'),
xlim ( [0 255]), ylim([0 255]);
subplot (1,3,2), imshow (I), title ('Original Image');
subplot (1,3,3), imshow (I_neg), title('Negative Image');
I_cmp
imcomplement (I); figure, imshow(I_cmp)
Transcribed Image Text:% Create a negative transformation function and show the result after applied to the moon image. imread('moon.tif'); = uint8(255:-1:0); y I_neg y (I + 1); figure, subplot(1,3,1), plot(y),title('Transformation Function'), xlim ( [0 255]), ylim([0 255]); subplot (1,3,2), imshow (I), title ('Original Image'); subplot (1,3,3), imshow (I_neg), title('Negative Image'); I_cmp imcomplement (I); figure, imshow(I_cmp)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Knowledge Booster
Processes of 3D Graphics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education