Database System Concepts
Database System Concepts
7th Edition
ISBN: 9780078022159
Author: Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher: McGraw-Hill Education
Bartleby Related Questions Icon

Related questions

Question

Shows the results of applying gamma correction to an input image using two different values of n, how does the shape of the curve change if we were to use a different value for n?

Logarithmic transformation functions can be used to compress the dynamic range of an
image in order to bring out features that were not originally as clear.
* Close all open figures and clear all workspace variables.
% Generate a logarithmic transformation function.
clear ;clc;close all
x = 0:255; c = 255 / log (256) ;
y=c*log (x + 1);
figure, plot (y),title('Log Mapping Function'), axis tight, axis square
% Use the transformation function to generate the adjusted image.
imread ('tire.tif');
= I
I_log = uint8 (y(I + 1)) ;
Figure, subplot (2,2,1), imshow (I), title('Original Image');
subplot (2,2, 2), imshow(I_log), title('Adjusted Image');
subplot (2,2,3),imhist(I),title('histogram of original image');
subplot (2,2,4), imhist(I_log), title ('histogram of log image');
% The inverse of the log function is as follows.
exp (x/c) - 1;
I_invlog
figure, subplot (3,1,1), plot (z), title ('Inverse-log Mapping Function');
subplot (3,1,2), imshow (I_invlog), title('Adjusted Image');
subplot (3,1,3), imhist(I_invlog), title ('histogram of invlog image');
= uint8 (z (I_log + 1)) ;
expand button
Transcribed Image Text:Logarithmic transformation functions can be used to compress the dynamic range of an image in order to bring out features that were not originally as clear. * Close all open figures and clear all workspace variables. % Generate a logarithmic transformation function. clear ;clc;close all x = 0:255; c = 255 / log (256) ; y=c*log (x + 1); figure, plot (y),title('Log Mapping Function'), axis tight, axis square % Use the transformation function to generate the adjusted image. imread ('tire.tif'); = I I_log = uint8 (y(I + 1)) ; Figure, subplot (2,2,1), imshow (I), title('Original Image'); subplot (2,2, 2), imshow(I_log), title('Adjusted Image'); subplot (2,2,3),imhist(I),title('histogram of original image'); subplot (2,2,4), imhist(I_log), title ('histogram of log image'); % The inverse of the log function is as follows. exp (x/c) - 1; I_invlog figure, subplot (3,1,1), plot (z), title ('Inverse-log Mapping Function'); subplot (3,1,2), imshow (I_invlog), title('Adjusted Image'); subplot (3,1,3), imhist(I_invlog), title ('histogram of invlog image'); = uint8 (z (I_log + 1)) ;
% Create a negative transformation function and show the result after applied to the
moon image.
imread('moon.tif');
= uint8(255:-1:0);
y
I_neg
y (I + 1);
figure, subplot(1,3,1), plot(y),title('Transformation Function'),
xlim ( [0 255]), ylim([0 255]);
subplot (1,3,2), imshow (I), title ('Original Image');
subplot (1,3,3), imshow (I_neg), title('Negative Image');
I_cmp
imcomplement (I); figure, imshow(I_cmp)
expand button
Transcribed Image Text:% Create a negative transformation function and show the result after applied to the moon image. imread('moon.tif'); = uint8(255:-1:0); y I_neg y (I + 1); figure, subplot(1,3,1), plot(y),title('Transformation Function'), xlim ( [0 255]), ylim([0 255]); subplot (1,3,2), imshow (I), title ('Original Image'); subplot (1,3,3), imshow (I_neg), title('Negative Image'); I_cmp imcomplement (I); figure, imshow(I_cmp)
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education