Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Liquid food is heated in a tubular heat exchanger. The inner pipe wall temperature is 110 ° C. The internal diameter of the pipe is 40 mm. Product flows at 0.7 kg / s. If the initial temperature of the product is 7 ° C, calculate the convective heat transfer coefficient. The thermal properties of the product are as follows: specific heat = 3.7 kJ / (kg ° C), thermal conductivity = 0.6 W / (m ° C), product viscosity = 500 x 10-6 Pa s, density = 1000 kg / m³ , the product viscosity at 110 ° C = 410 x 10-6 Pa s.
a. Find the Reynold number = Answer.
b. Find the number Prantl = Answer.
c. Find the Nuselt = Answer number
d. Convection coefficient = AnswerW / m² ° C.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 5 cm thick steel pipe, 1.0 m long, with an internal diameter of 8 cm is covered with 4 cm thick insulation. The inside wall temperature of the steel pipe is 100°C. The ambient temperature around the insulated pipe is 24°C. The convective heat-transfer coeffi cient on the outer insulated surface is 50 W/(m² K). Calculate the temperature at the steel insulation interface. The thermal conductivity of steel is 54 W/(m K), and the thermal conductivity of insulation is 0.04 W/(m K).arrow_forwardAir at 25 ° C blows over the hot steel plate whose surface temperature is maintained at 200 ° C. The plates have dimensions of 50 cm x 50 cm and a thickness of 2.5 cm. The convection heat transfer coefficient on the upper surface is 25 W / (m² ° C). The thermal conductivity of steel is 45 W / (m ° C). Calculate the hourly heat loss from the plate surface. a. heat loss per hour = AnswerkJ. b. If the reverse side surface temperature is maintained, specify hourly heat loss = AnswerkJ.arrow_forwardA plane wall has a thermal conductivity of 20 W/(m-K) and generates heat at 0.5 MW/m3. The wall is 0.2 meters thick and is perfectly insulated on one side. The other side is exposed to fluid at 100 °C. The convective heat transfer coefficient between the wall and the fluid is 400 W/(m2 K). Determine the maximum temperature in the wall.arrow_forward
- The exhaust duct from a heater has an inside diameter of 114.3 mm with ceramic walls 6.4 mm thick. The average k=1.52 W/m· K. Outside this wall, an insulation or rock wool 102 mm thick is installed. The thermal conductivity of the rock wool is k= 0.046+ 1.56 x 104 T°C (W/m · K). The inside surface * = temperature of the ceramic is T1 = 588.7 K, and the outside surface temperature of the insulation is 311 K. Calculate the heat loss for 1.5 m of duct and the interface temperature T2 between the ceramic and the insulation. [Hint: The correct value of km for the insulation is that evaluated at the mean temperature of (T2 + T3)/2. Hence, for the first trial assume a mean temperature of, say, 448 K. Then calculate the heat loss and T2 Using this new T2, calculate a new mean temperature and proceed as before.]arrow_forwardExample • The cylinder is made from aluminum with diameter and thickness of 5 cm and 1 cm respectively. The wall temperature in the inside of cylinder is 50°C, while the temperature of the air is 30°C. the coefficient of convection in the air is 10 W/m2-C. Calculate the heat loss from the cylinder per unit length! • Calculate the thickness of the insulation so heat loss from cylinder will decrease 50% of initial condition. Thermal conductivity of the isolator (k) : 0.5 W/m°C state.pptx 7 MB VIEW Tampilkan semuaarrow_forward.240mm steam main pipe, 210m long is covered with 50mm of high temperature insulation (k-0.092 W/m °C) and 40mm of low temperature insulation (k-0.062 W/m °C). The inner and the outer surface temperature as measured are 390 °C and 40 °C respectively. Calculate: 1- The total heat loss per hour. 2- The temperature between two layers of insulation.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The