Linear transformations are useful in computer graphics and can be used to rotate or
translate figures in two-dimensional space.
Begin with a triangle with vertices: A (0,0), B (1,0), and C (0,1)
a) Sketch and give the coordinates of the new triangle, after transformation T1: a reflection of the
original triangle in the x-axis.
b) Sketch and give the coordinates of the new triangle, after transformation T2: a rotation of the original
triangle around the origin of ? = 135 degrees
c) Sketch and give the coordinates of the new triangle, after transformation T3: an expansion of the
original triangle represented by ?3
(x, y) = (3x, y)
d) Sketch and give the coordinates of the new triangle, after transformation T4: the shear of the original
triangle represented by ?4
(x, y) = (x, y + 4x)
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 8 images
- Name: ID: A 14. AABC has vertices A(3, 1), B(4, 5), and C(2, 3). Rotate AABC 90° counterclockwise about the origin and then reflect it across the x-axis. a. C. B" b. d. -B- B' -E- B' B" B"arrow_forwardUse the distance formula to show all sides on graph to show an equilateral equiangular triangle . Also use use the slope formula to show angles are congruent .arrow_forwardCan someone please help me with these?arrow_forward
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,