Lighting consumes 4% of the energy consumed by a building. Control strategies that turn lights on when the space is occupied are one energy savings strategy. In this problem, we'll calculate the energy impact of a lighting schedule. For the purposes of this problem, a neopixel is a single LED. A neopixel strip is a group of LEDs. A) Measure the current draw of your neopixel strip of 5 LEDs when all 5 lights are powered on, set to full brightness, with each RGB color set to 255. Report your answer in units of amps. B) Calculate the power consumption of your 5 neopixel strip when connected to a 5V source using the current measured in part A. Report your answer in units Watts. C) Imagine neopixels are used to light the entire engineering building, which requires 50,000 neopixels. Calculate the energy consumption due to lighting of the entire engineering building for one 7-day week assuming: i. Option 1: Lighting is on continuously for 7 days ii. Option 2: Lighting follows a schedule: 1. Neopixels are on from 6 AM to 10 PM on weekdays 2. Neopixels are off from 10 PM to 6 AM on weekdays 3. Neopixels are off during weekends iii. What is the percent energy savings between Option 1 and Option 2? Report your answer in units of kWh. One kWh is a 1000 W of power consumption occurring for a duration of one hour.
Lighting consumes 4% of the energy consumed by a building. Control strategies that turn lights on when the space is occupied are one energy savings strategy. In this problem, we'll calculate the energy impact of a lighting schedule. For the purposes of this problem, a neopixel is a single LED. A neopixel strip is a group of LEDs. A) Measure the current draw of your neopixel strip of 5 LEDs when all 5 lights are powered on, set to full brightness, with each RGB color set to 255. Report your answer in units of amps. B) Calculate the power consumption of your 5 neopixel strip when connected to a 5V source using the current measured in part A. Report your answer in units Watts. C) Imagine neopixels are used to light the entire engineering building, which requires 50,000 neopixels. Calculate the energy consumption due to lighting of the entire engineering building for one 7-day week assuming: i. Option 1: Lighting is on continuously for 7 days ii. Option 2: Lighting follows a schedule: 1. Neopixels are on from 6 AM to 10 PM on weekdays 2. Neopixels are off from 10 PM to 6 AM on weekdays 3. Neopixels are off during weekends iii. What is the percent energy savings between Option 1 and Option 2? Report your answer in units of kWh. One kWh is a 1000 W of power consumption occurring for a duration of one hour.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
Lighting consumes 4% of the energy consumed by a building. Control strategies that turn lights on when the space is occupied are one energy savings strategy. In this problem, we'll calculate the energy impact of a lighting schedule. For the purposes of this problem, a neopixel is a single LED. A neopixel strip is a group of LEDs.
A) Measure the current draw of your neopixel strip of 5 LEDs when all 5 lights are powered on, set to full brightness, with each RGB color set to 255. Report your answer in units of amps.
B) Calculate the power consumption of your 5 neopixel strip when connected to a 5V source using the current measured in part A. Report your answer in units Watts.
C) Imagine neopixels are used to light the entire engineering building, which requires 50,000 neopixels. Calculate the energy consumption due to lighting of the entire engineering building for one 7-day week assuming:
i. Option 1: Lighting is on continuously for 7 days
ii. Option 2: Lighting follows a schedule:
1. Neopixels are on from 6 AM to 10 PM on weekdays
2. Neopixels are off from 10 PM to 6 AM on weekdays
3. Neopixels are off during weekends
iii. What is the percent energy savings between Option 1 and Option 2?
Report your answer in units of kWh. One kWh is a 1000 W of power consumption occurring for a duration of one hour.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 25 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,