College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Light with a wavelength of 590nm is incident upon a double slit with a separation of 0.3mm (10× 10-3m). A screen is located 1.5m from the double slit. At what distance from the center of the screen will the fourth dark fringe appear?
The fourth dark fringe will appear at a distance of _______ mm.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In a double-slit experiment the distance between slits is 3.8 mm and the slits are 1.1 m from the screen. Two interference patterns can be seen on the screen: one due to light of wavelength 470 nm, and the other due to light of wavelength 570 nm. What is the separation in meters on the screen between the m = 3 bright fringes of the two interference patterns?arrow_forwardLight of wavelength 0.616 um passed through two slits separated by distance d=2.61 µm and creates an interference pattern that can be observed on a screen placed distance 0.86 m away. The bright fringes in the pattern are not equidistant. What is the distance between fırst and third bright band observed on the screen? Provide your answer in centimeters, with a precision one place after decimal.arrow_forwardA double-slit arrangement produces interference fringes that have an angular separation of 5.14 × 10-3 rad for light with a wavelength of A = 429 nm. For what wavelength would the angular separation be 14.6% greater? Number i Unitsarrow_forward
- A sheet of paper 0.014 cm thick separates two sheets of glass to form an air wedge 16.5 cm long. When the air wedge is illuminated with monochromatic light, the distance between the centers of the first and eighth dark bands is 2.3 mm. Determine the wavelength of the light, in nm,arrow_forwardHurry!!!arrow_forwardIn a double-slit diffraction experiment, a 650 nm light source illuminates slits with a 3.0\mu m slit width and a 12\mu slit separation - Part (a) How many double-slit interference maxima are located within the central maximum of the diffraction pattern? - Part (b) If the intensity of central double-slit fringe is 1.0mW/cm2 , what is the intensity of the first fringe to one side of the center? - Part (c) If the intensity of central double-slit fringe is 1.0mW/cm2 , what is the intensity of the second fringe from the center?arrow_forward
- Light of wavelength 520 nm illuminates a slit of width 0.45 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.52 mm from the central maximum? 0.45 m 0.53 m 0.63 m 0.72 m (b) Calculate the width of the central maximum. 1.04 mm 2.08 mm 3.12 mm 4.16 mmarrow_forwardI need help with this problem. Thank you.arrow_forwardIn a single slit diffraction experiment, the width of the slit is 3.1 x 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through the slit and forms a diffraction pattern on the screen, what is the linear distance on the screen from the center of the diffraction pattern to the first dark fringe? 6.3 cm 7.4 cm 4.3 cm O 8.5 cmarrow_forward
- A double slit experiment is performed where the two slits are separated by 0.134 mm. Visible light of 532 nm passes through the slits and falls onto a screen 4.00 m from the slits. a) What is the distance along the screen from the central maximum to the nearest minimum? ________________________ b) What is the angular position (in degrees) of the third-order maximum, relative to the central maximum? ________________________ c) What are some other wavelengths of light that would have maxima located at the same position as the third-order maximum for 532 nm light? List at least four wavelengths, along with the order of the maximum, and the type of light (visible, infrared, etc). Note that UV is from 10-380 nm, visible is from 380-750 nm, and IR is from 750 nm – 1 mm. Wavelength Order Type of lightarrow_forwardA double slit experiment is performed where the two slits are separated by 0.134 mm. Visible light of 532 nm passes through the slits and falls onto a screen 4.00 m from the slits. a) What is the distance along the screen from the central maximum to the nearest minimum? ________________________ b) What is the angular position (in degrees) of the third-order maximum, relative to the central maximum? ________________________ c) What are some other wavelengths of light that would have maxima located at the same position as the third-order maximum for 532 nm light? List at least four wavelengths, along with the order of the maximum, and the type of light (visible, infrared, etc). Note that UV is from 10-380 nm, visible is fromarrow_forwardLight is sent through a single slit of width w = 0.52 mm. On a screen, which is L = 1.9 m from the slit, the width of the central maximum is D = 5.2 mm. a) The angle of the first dark fringe theta dark. Express sin(theta dark) in terms of the wavelength of the light λ and w. sin(theta dark) = b) Express tan(theta dark) in terms of D and L. c) If D << L, how is tan(theta dark) related to sin(theta dark)? d) Express λ in terms of w, D, and L? e) Solve for the numerical value of λ, in nanometers.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON