College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Light with a frequency of 3.00 x 10^15 ejects electrons from the surface of platinum, which has a work function of 6.50 ev. What is the minimum de Broglie wavelength of the ejected electrons?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You have a sample of Sodium with a Work Function of 2.28 eV that you are shining light upon to demonstrate the Photoelectric Effect. Which type of light would be the lowest Energy that would still work? [If visible light, state the color.] How fast will an electron be ejected from the sample material if we use UV light of wavelength of 10.0 nm? m/sarrow_forwardThe work function of lithium is W0 = 2.93 eV. (a) What is the maximum wavelength of incident light for which photoelectrons will be released from lithium? m(b) What is the minimum frequency of incident light, called the cutoff frequency, for which photoelectrons will be released from lithium? Hz(c) What is the maximum kinetic energy of photoelectrons emitted by lithium if 8.30-eV photons strike its surface? eVarrow_forwardA certain metal has a work function of 233.0 kJ per mole of e_. What wavelength of electromagnetic radiation (in nm) must be directed at the surface in order for electrons to be ejected with a de Broglie wavelength of 14.18 angstroms (Å) 1 Å = 1×10-10 metersarrow_forward
- The work function of caesium metal is 2.14 eV. When light of frequency 6 x 1014 Hz is incident on the metal surface, photoemission of electrons occurs. What is the maximum kinetic energy of the emitted electrons,arrow_forwardLight with wavelength ? = 635 nm is incident on a metallic surface. Electrons are ejected from the surface. The maximum speed of these electrons is v = 4.40 ✕ 105 m/s. a) What is the work function of the metal (in eV)? b) What is the cutoff frequency for this metal (in Hz)?arrow_forwardA photon of wavelength 0.90638 nm strikes a free electron that is initially at rest. The photon is scattered straight backward. What is the speed of the recoil electron after the collision? V = i ! m/sarrow_forward
- In a particular case of Compton scattering, a photon collides with a free electron and scatters backwards. The wavelength after the collision is exactly double the wavelength before the collision. What is the wavelength of the incident photon? (mel = 9.11 × 10-31 kg, h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s) Group of answer choices 1.2 pm 4.8 pm 3.6 pm 2.4 pmarrow_forwardDetermine the wavelength of an electron that has a kinetic energy of 1.15 × 10 J. Report your answer in units of nm.arrow_forwardAccording to this question, what is the threshold frequency and what is the kinetic energy of the ejected electron?arrow_forward
- Radiation of a certain wavelength causes electrons with a maximum kinetic energy of 0.62 eV to be ejected from a metal whose work function is 2.85 eV. What will be the maximum kinetic energy with which this same radiation ejects electrons from another metal whose work function is 2.15 eV?arrow_forwardBased on your answer in Question 7, when light with a wavelength of 198 nm strikes the surface of tin metal, electrons are ejected with a maximum kinetic energy of 2.9 x 10-19 J. What is the binding energy of these electrons to the metal?arrow_forwardThe work function of a material refers to the minimum energy required to remove an electron from the material. The work function of tungsten is 4.55 eV. Calculate the maximum wavelength (in nm) for the photoelectric emission of electrons. O λ = 220 nm O λ = 287 nm Oλ = 292 nm Oλ = 273 nmarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON