Light of wavelengths shorter than 275 nm can be used to photodissociate the hydrogen molecule into hydrogen atoms in the gas phase. A 70.0 mL glass cylinder contains H, (g) at 65.0 mtorr and 25 °C. What minimum amount of light energy must be absorbed by the hydrogen in the tube to dissociate 26.0% of the molecules? 0.277 energy absorbed: Incorrect

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
**Photodissociation of Hydrogen Molecules**

Light of wavelengths shorter than 275 nm can be used to photodissociate hydrogen molecules into hydrogen atoms in the gas phase. In this scenario, a 70.0 mL glass cylinder contains \( \text{H}_2 (g) \) at 65.0 mtorr and 25 °C. 

**Problem:**

What is the minimum amount of light energy that must be absorbed by the hydrogen in the tube to dissociate 26.0% of the molecules?

**Solution Attempt:**

An energy value of 0.277 J was entered, but it is labeled as "Incorrect."

**Instructions:**

Use the principles of photochemistry and gaseous equilibrium to calculate the correct amount of energy needed for the dissociation process. Remember to convert pressure and volume units, and consider the dissociation energy per molecule to find the total energy required.
Transcribed Image Text:**Photodissociation of Hydrogen Molecules** Light of wavelengths shorter than 275 nm can be used to photodissociate hydrogen molecules into hydrogen atoms in the gas phase. In this scenario, a 70.0 mL glass cylinder contains \( \text{H}_2 (g) \) at 65.0 mtorr and 25 °C. **Problem:** What is the minimum amount of light energy that must be absorbed by the hydrogen in the tube to dissociate 26.0% of the molecules? **Solution Attempt:** An energy value of 0.277 J was entered, but it is labeled as "Incorrect." **Instructions:** Use the principles of photochemistry and gaseous equilibrium to calculate the correct amount of energy needed for the dissociation process. Remember to convert pressure and volume units, and consider the dissociation energy per molecule to find the total energy required.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY