# lidho sorge, 290, 3 and and cos 0 < 0 56. sin = =

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
Can you explain question 56
**Trigonometry Exercises and Identities**

**Exercises 37-40:**
- Find the terminal side of an angle \(\theta\) on the line in the given quadrant.
- Calculate the six trigonometric functions of \(\theta\).
- Compare the slope of the line to \(\tan \theta\).

37. \(y = -4x\), Quadrant II  
38. \(y = \frac{1}{2}x\), Quadrant I  
39. \(y = 6x\), Quadrant III  
40. \(y = \frac{3}{2}x\), Quadrant IV  

**Exercises 41-48: Critical Thinking**
- If the given angle is in standard position, determine the slope \(m\) of the angle's terminal side.
- Approximate your answer to two decimals where appropriate.

41. \(45^\circ\)  
42. \(135^\circ\)  
43. \(-240^\circ\)  
44. \(-150^\circ\)  
45. \(65^\circ\)  
46. \(187^\circ\)  
47. \(-310^\circ\)  
48. \(-110^\circ\)  

**Identities**

**Exercises 49-58:**
- Determine the values of the trigonometric functions of \(\theta\) using the given information.

49. \(\sin \theta = \frac{3}{5}\) and \(\cos \theta = \frac{4}{5}\)

50. \(\sin \theta = \frac{-7}{25}\) and \(\cos \theta = \frac{24}{25}\)

51. \(\csc \theta = \frac{17}{15}\) and \(\sec \theta = \frac{-17}{8}\)

52. \(\csc \theta = 2\) and \(\sec \theta = \frac{-2}{\sqrt{3}}\)

53. \(\tan \theta = \frac{5}{12}\) and \(\cos \theta = \frac{12}{13}\) **(Hint: \(\sin \theta = \tan \theta \cos \theta\))**

54. \(\sin \theta = \frac{3}{5}\) and \(\cot \theta = \frac{-4}{3}\)

55. \(\sin
Transcribed Image Text:**Trigonometry Exercises and Identities** **Exercises 37-40:** - Find the terminal side of an angle \(\theta\) on the line in the given quadrant. - Calculate the six trigonometric functions of \(\theta\). - Compare the slope of the line to \(\tan \theta\). 37. \(y = -4x\), Quadrant II 38. \(y = \frac{1}{2}x\), Quadrant I 39. \(y = 6x\), Quadrant III 40. \(y = \frac{3}{2}x\), Quadrant IV **Exercises 41-48: Critical Thinking** - If the given angle is in standard position, determine the slope \(m\) of the angle's terminal side. - Approximate your answer to two decimals where appropriate. 41. \(45^\circ\) 42. \(135^\circ\) 43. \(-240^\circ\) 44. \(-150^\circ\) 45. \(65^\circ\) 46. \(187^\circ\) 47. \(-310^\circ\) 48. \(-110^\circ\) **Identities** **Exercises 49-58:** - Determine the values of the trigonometric functions of \(\theta\) using the given information. 49. \(\sin \theta = \frac{3}{5}\) and \(\cos \theta = \frac{4}{5}\) 50. \(\sin \theta = \frac{-7}{25}\) and \(\cos \theta = \frac{24}{25}\) 51. \(\csc \theta = \frac{17}{15}\) and \(\sec \theta = \frac{-17}{8}\) 52. \(\csc \theta = 2\) and \(\sec \theta = \frac{-2}{\sqrt{3}}\) 53. \(\tan \theta = \frac{5}{12}\) and \(\cos \theta = \frac{12}{13}\) **(Hint: \(\sin \theta = \tan \theta \cos \theta\))** 54. \(\sin \theta = \frac{3}{5}\) and \(\cot \theta = \frac{-4}{3}\) 55. \(\sin
Expert Solution
Step 1: Given

Given that 

sin theta equals negative 12 over 13
cos theta less than 0

The aim is to find the value of theta


steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning