
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:Let z < 0 be region 1 with dielectric constant &r1
=
4, while z> 0 is region 2 with &r2 = 7.5.
Given that E₁ = 60ax − 100a, + 40a, V/m, Calculate D₂.
(Hint: Boundary conditions)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electric potential of a charged conducting sphere (as well as a spherical shell) can be calculated as Q R' V = k where is the charge and R is the radius of the sphere. Calculate the electric potential of a solid conducting sphere of a radius of R = 6 cm if the sphere loses 0.1% from the total number of its free electrons. The sphere is made of aluminum and has the density 2.7 g/cm³, molar mass 27 g/mol and one free electron per atom. Follow the steps listed below. 1. Find the number of free electrons per cm³ in aluminum. The number of free electrons per cm³, ne = Units Select an answer ✓ 2. Calculate the volume of the sphere and use it to find the total number of free electron inside the sphere. The number of free electrons, Ne = Units Select an answer 3. Calculate the charge of the sphere after it loses 0.1% of its electrons and use it to find the potential of the sphere. The electric potential of the sphere, V = Units Select an answer ✓arrow_forwardA charged conducting spherical shell of radius R = 3 m with total charge q = 23 μC produces the electric field given by E⃗ (r)={014πϵ0qr2r̂ forforr<Rr>R(PICTURE ATTACHED OF EQUATION) a. Enter an expression for the electric potential inside the sphere ( r < R ) in terms of the given quantities, assuming the potential is zero at infinity. V(r)= b. Calculate the electric potential, in volts, at radius r inside the charged shell. V(r) =arrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forward
- Consider a cylindrical capacitor with two layers of dielectric materials. The inner conductor radius is a and the outer conductor radius is c. The inner dielectric material fills the thickness (b-a) and its permittivity is & and the outer dielectric material fills the thickness (c-b) and its permittivity is ε, as shown in the figure. Find the capacitance of the capacitor if its length is 1. Consider a spherical capacitor with two layers of dielectric materials. The inner conductor radius is a and the outer conductor radius is c. The inner dielectric material fills the thickness (b-a) and its permittivity is & and the outer dielectric material fills the thickness (c-b) and its permittivity is ६, Find the capacitance of the capacitor.arrow_forwardUse the exact values you enter in previous answer(s) to make later calculation(s). The electrons in a CRT are accelerated through a potential difference of 32 kV. (a) Do the electrons move from a region of high potential to a region of low potential, or vice versa? O from high potential to low potential O from low potential to high potential (b) What is the change in kinetic energy of one of the electrons? (c) If the initial speed is very small, what is the final speed of an electron? m/sarrow_forwardIn C how does 1/C = 1/4 + 1/8 turn into 1/C = 3/8?arrow_forward
- .The electric potential (voltage) in a particular region of space is given by: V(x,y,z) = { K(x³z? - y5) + C)} Where, in the above function, r= (x2 + y2 + z2)% and Kand C are constants... alculate the components of the electric field, Ex, Ey, E,.arrow_forwardParl D Constants A cylindrical capacitor has an inner conductor of radius 2.8 mm and an outer conductor of radius 3.2 mm. The two conductors are separated by vacuum, and the entire capacitor is 2.5 m long. The potential of the inner conductor relative to that of the outer conductor is 320 mV. Find the charge (magnitude and sign) on the inner conductor. Express your answer with the appropriate units. μA ха Хь ماه a b X.10n ☑ Q1= 336 C Submit Previous Answers Request Answer × Incorrect; Try Again; 3 attempts remaining Check that you have converted between SI units of electric charge correctly. Part C The potential of the inner conductor relative to that of the outer conductor is 320 mV. Find the charge (magnitude and sign) on the outer conductor. Express your answer with the appropriate units. HA ? Q2 Value Unitsarrow_forwardA parallel plate capacitor is composed of two rectangular plates with length 5mm and width 3 mm. The thickness of the insulating material is 0.5 mm. Find the permittivity of the insulating material if the capacitance is 2 μF.arrow_forward
- Problem 3.01. (a) Find the electric field between two plates which are separated along the y-axis Ay = 6.00 mm, where the bottom plate has a potential V₂ = 150. mV and the top plate has a potential V₁ = 5.00 mV. (b) What is the potential at a distance Ay' = 2.00 um from the bottom plate?arrow_forwardConsider a solid cylindrical conductor of inner conductor radius 61 cm and outer conductor radius 84 cm with charge Q that is coaxial with a cylindrical shell of negligible thickness. Find the capacitance, in nF, of this cylindrical capacitor if its length is 74 m and the insulator used is mica (εr = 6).arrow_forwardFor problem 4 part b in square centimeters using inner and outer radii of the spherical capacitor of a = 2.00 cm and b = 1.05 a, respectively. (Answer in 5 sig. figs.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON