Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
100%

I need detailed help on how find basis and nullspace of this problem 2b (higfhlighted), thanyou so much.

2) Let V = P3 (Q) the vector space consisting of polynomials in the variable x of degree at most 5.
Let p E L(V) be a linear map defined by o(f) = x²f" – 6xf' + 12f for any f e V.
%3D
(a) Prove that
is a linear transformation.
T:V → W is a linear transformation if the following conditions hold:
1) T(x + y) = T(x) + T(y),x, y E V.
2) T (ах) — аТ (х);х € V &a scalar.
Pf:
1) p(f + g) = x²(f + g)" – 6x(f +g)' + 12(f + g)
= x²(f" + g") – 6x(f' + g') + 12(f + g)
= (x²f" – 6xf' + 12f) + (x²g" – 6xg' + 12g)
%3D
d²f)
= p(f)+ ¢(g)
..(: f + g) = d²M+ d°@)
dx²
dx²
dx²
2) p(af) = x²(af)" – 6x(af)' + 12(af)
= x² (af") – 6x(af') + 12(af)
= ax²f" – a6xf' + a12f
= aw(f)
:) φ(αf)- αφf)
Hence, p is a linear transformation.
(b) Determine a basis for the image and nullspace of p.
expand button
Transcribed Image Text:2) Let V = P3 (Q) the vector space consisting of polynomials in the variable x of degree at most 5. Let p E L(V) be a linear map defined by o(f) = x²f" – 6xf' + 12f for any f e V. %3D (a) Prove that is a linear transformation. T:V → W is a linear transformation if the following conditions hold: 1) T(x + y) = T(x) + T(y),x, y E V. 2) T (ах) — аТ (х);х € V &a scalar. Pf: 1) p(f + g) = x²(f + g)" – 6x(f +g)' + 12(f + g) = x²(f" + g") – 6x(f' + g') + 12(f + g) = (x²f" – 6xf' + 12f) + (x²g" – 6xg' + 12g) %3D d²f) = p(f)+ ¢(g) ..(: f + g) = d²M+ d°@) dx² dx² dx² 2) p(af) = x²(af)" – 6x(af)' + 12(af) = x² (af") – 6x(af') + 12(af) = ax²f" – a6xf' + a12f = aw(f) :) φ(αf)- αφf) Hence, p is a linear transformation. (b) Determine a basis for the image and nullspace of p.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,