Let v = Find [-13]; ®= { [4]· [H] }; × = {[3]· B]}-· B C a. [v]: b. [v]: c. [B]: d. [B][v]: e. Are [B][v] and [v] equal? ? î

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \(\mathbf{v} = \begin{bmatrix} -13 \\ -4 \end{bmatrix}\); \(\mathcal{B} = \left\{ \begin{bmatrix} 4 \\ -4 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix} \right\}\); \(\mathcal{C} = \left\{ \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}\).

Find

a. \([\mathbf{v}]_{\mathcal{B}}:\) [Answer]

b. \([\mathbf{v}]_{\mathcal{C}}:\) [Answer]

c. \([\mathcal{B}]_{\mathcal{C}}:\) [Answer]

d. \([\mathcal{B}]_{\mathcal{C}}[\mathbf{v}]_{\mathcal{B}}:\) [Answer]

e. Are \([\mathcal{B}]_{\mathcal{C}}[\mathbf{v}]_{\mathcal{B}}\) and \([\mathbf{v}]_{\mathcal{C}}\) equal? [Answer]
Transcribed Image Text:Let \(\mathbf{v} = \begin{bmatrix} -13 \\ -4 \end{bmatrix}\); \(\mathcal{B} = \left\{ \begin{bmatrix} 4 \\ -4 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix} \right\}\); \(\mathcal{C} = \left\{ \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}\). Find a. \([\mathbf{v}]_{\mathcal{B}}:\) [Answer] b. \([\mathbf{v}]_{\mathcal{C}}:\) [Answer] c. \([\mathcal{B}]_{\mathcal{C}}:\) [Answer] d. \([\mathcal{B}]_{\mathcal{C}}[\mathbf{v}]_{\mathcal{B}}:\) [Answer] e. Are \([\mathcal{B}]_{\mathcal{C}}[\mathbf{v}]_{\mathcal{B}}\) and \([\mathbf{v}]_{\mathcal{C}}\) equal? [Answer]
Expert Solution
steps

Step by step

Solved in 6 steps with 47 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,